logo

Expression of type ExprTuple

from the theory of proveit.numbers.division

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprTuple
from proveit.numbers import Exp, Mult, Neg, four, frac, one, three, two
In [2]:
# build up the expression from sub-expressions
sub_expr1 = frac(four, three)
expr = ExprTuple(Mult(sub_expr1, Exp(two, Neg(one))), Mult(sub_expr1, frac(one, two)))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(\frac{4}{3} \cdot 2^{-1}, \frac{4}{3} \cdot \frac{1}{2}\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
wrap_positionsposition(s) at which wrapping is to occur; 'n' is after the nth comma.()()('with_wrapping_at',)
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'leftleft('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1, 2
1Operationoperator: 4
operands: 3
2Operationoperator: 4
operands: 5
3ExprTuple7, 6
4Literal
5ExprTuple7, 8
6Operationoperator: 9
operands: 10
7Operationoperator: 12
operands: 11
8Operationoperator: 12
operands: 13
9Literal
10ExprTuple17, 14
11ExprTuple15, 16
12Literal
13ExprTuple20, 17
14Operationoperator: 18
operand: 20
15Literal
16Literal
17Literal
18Literal
19ExprTuple20
20Literal