logo

Expression of type ExprTuple

from the theory of proveit.numbers.division

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprTuple, Px, d, x, y, z
from proveit.logic import Equals, Forall, InSet, NotEquals
from proveit.numbers import Complex, Interval, Sum, frac, zero
In [2]:
# build up the expression from sub-expressions
sub_expr1 = [x]
sub_expr2 = Interval(y, z)
expr = ExprTuple(Forall(instance_param_or_params = sub_expr1, instance_expr = InSet(Px, Complex), domain = sub_expr2), Forall(instance_param_or_params = [d], instance_expr = Equals(frac(Sum(index_or_indices = sub_expr1, summand = Px, domain = sub_expr2), d), Sum(index_or_indices = sub_expr1, summand = frac(Px, d), domain = sub_expr2)), domain = Complex, condition = NotEquals(d, zero)))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(\forall_{x \in \{y~\ldotp \ldotp~z\}}~\left(P\left(x\right) \in \mathbb{C}\right), \forall_{d \in \mathbb{C}~|~d \neq 0}~\left(\frac{\sum_{x = y}^{z} P\left(x\right)}{d} = \left(\sum_{x = y}^{z} \frac{P\left(x\right)}{d}\right)\right)\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
wrap_positionsposition(s) at which wrapping is to occur; 'n' is after the nth comma.()()('with_wrapping_at',)
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'leftleft('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1, 2
1Operationoperator: 4
operand: 6
2Operationoperator: 4
operand: 7
3ExprTuple6
4Literal
5ExprTuple7
6Lambdaparameter: 48
body: 8
7Lambdaparameter: 42
body: 10
8Conditionalvalue: 11
condition: 40
9ExprTuple42
10Conditionalvalue: 12
condition: 13
11Operationoperator: 43
operands: 14
12Operationoperator: 15
operands: 16
13Operationoperator: 17
operands: 18
14ExprTuple41, 30
15Literal
16ExprTuple19, 20
17Literal
18ExprTuple21, 22
19Operationoperator: 38
operands: 23
20Operationoperator: 32
operand: 29
21Operationoperator: 43
operands: 25
22Operationoperator: 26
operands: 27
23ExprTuple28, 42
24ExprTuple29
25ExprTuple42, 30
26Literal
27ExprTuple42, 31
28Operationoperator: 32
operand: 35
29Lambdaparameter: 48
body: 34
30Literal
31Literal
32Literal
33ExprTuple35
34Conditionalvalue: 36
condition: 40
35Lambdaparameter: 48
body: 37
36Operationoperator: 38
operands: 39
37Conditionalvalue: 41
condition: 40
38Literal
39ExprTuple41, 42
40Operationoperator: 43
operands: 44
41Operationoperator: 45
operand: 48
42Variable
43Literal
44ExprTuple48, 47
45Variable
46ExprTuple48
47Operationoperator: 49
operands: 50
48Variable
49Literal
50ExprTuple51, 52
51Variable
52Variable