| step type | requirements | statement |
0 | instantiation | 1, 2, 3, 4, 5* | ⊢ |
| : , : |
1 | theorem | | ⊢ |
| proveit.numbers.division.div_as_mult |
2 | instantiation | 6, 61, 81, 7 | ⊢ |
| : , : |
3 | instantiation | 102, 89, 8 | ⊢ |
| : , : , : |
4 | instantiation | 9, 10 | ⊢ |
| : |
5 | instantiation | 42, 11, 12 | ⊢ |
| : , : , : |
6 | theorem | | ⊢ |
| proveit.numbers.division.div_complex_closure |
7 | instantiation | 13, 88 | ⊢ |
| : |
8 | instantiation | 102, 96, 14 | ⊢ |
| : , : , : |
9 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.nonzero_if_in_rational_nonzero |
10 | instantiation | 102, 15, 20 | ⊢ |
| : , : , : |
11 | instantiation | 70, 16 | ⊢ |
| : , : , : |
12 | instantiation | 42, 17, 18 | ⊢ |
| : , : , : |
13 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.nonzero_if_is_nat_pos |
14 | instantiation | 102, 19, 20 | ⊢ |
| : , : , : |
15 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.rational_pos_within_rational_nonzero |
16 | instantiation | 21, 51, 41, 94, 22*, 23* | ⊢ |
| : , : , : |
17 | instantiation | 32, 24, 25 | ⊢ |
| : , : , : |
18 | instantiation | 26, 61, 40, 52, 51, 35*, 27* | ⊢ |
| : , : , : , : |
19 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.rational_pos_within_rational |
20 | instantiation | 28, 29, 30 | ⊢ |
| : , : |
21 | theorem | | ⊢ |
| proveit.numbers.exponentiation.neg_power_of_quotient |
22 | instantiation | 31, 81 | ⊢ |
| : |
23 | instantiation | 31, 66 | ⊢ |
| : |
24 | instantiation | 32, 33, 34 | ⊢ |
| : , : , : |
25 | instantiation | 70, 35 | ⊢ |
| : , : , : |
26 | theorem | | ⊢ |
| proveit.numbers.division.prod_of_fracs |
27 | instantiation | 42, 36, 37 | ⊢ |
| : , : , : |
28 | theorem | | ⊢ |
| proveit.numbers.division.div_rational_pos_closure |
29 | instantiation | 102, 38, 92 | ⊢ |
| : , : , : |
30 | instantiation | 102, 38, 88 | ⊢ |
| : , : , : |
31 | theorem | | ⊢ |
| proveit.numbers.exponentiation.complex_x_to_first_power_is_x |
32 | theorem | | ⊢ |
| proveit.logic.equality.sub_right_side_into |
33 | instantiation | 39, 61, 40, 52, 41, 51 | ⊢ |
| : , : , : , : , : |
34 | instantiation | 42, 43, 44 | ⊢ |
| : , : , : |
35 | instantiation | 65, 61 | ⊢ |
| : |
36 | instantiation | 45, 99, 46, 47, 48, 49 | ⊢ |
| : , : , : , : |
37 | instantiation | 50, 51, 52, 66, 53*, 54*, 55* | ⊢ |
| : , : , : |
38 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.nat_pos_within_rational_pos |
39 | theorem | | ⊢ |
| proveit.numbers.division.mult_frac_cancel_denom_left |
40 | instantiation | 102, 89, 56 | ⊢ |
| : , : , : |
41 | instantiation | 102, 63, 57 | ⊢ |
| : , : , : |
42 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
43 | instantiation | 70, 58 | ⊢ |
| : , : , : |
44 | instantiation | 70, 59 | ⊢ |
| : , : , : |
45 | axiom | | ⊢ |
| proveit.core_expr_types.operations.operands_substitution |
46 | instantiation | 60 | ⊢ |
| : , : |
47 | instantiation | 60 | ⊢ |
| : , : |
48 | instantiation | 80, 61 | ⊢ |
| : |
49 | instantiation | 79, 66 | ⊢ |
| : |
50 | theorem | | ⊢ |
| proveit.numbers.division.frac_cancel_left |
51 | instantiation | 102, 63, 62 | ⊢ |
| : , : , : |
52 | instantiation | 102, 63, 64 | ⊢ |
| : , : , : |
53 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.mult_2_2 |
54 | instantiation | 80, 66 | ⊢ |
| : |
55 | instantiation | 65, 66 | ⊢ |
| : |
56 | instantiation | 102, 96, 67 | ⊢ |
| : , : , : |
57 | instantiation | 102, 74, 68 | ⊢ |
| : , : , : |
58 | instantiation | 70, 69 | ⊢ |
| : , : , : |
59 | instantiation | 70, 71 | ⊢ |
| : , : , : |
60 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
61 | instantiation | 102, 89, 72 | ⊢ |
| : , : , : |
62 | instantiation | 102, 74, 73 | ⊢ |
| : , : , : |
63 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_nonzero_within_complex_nonzero |
64 | instantiation | 102, 74, 75 | ⊢ |
| : , : , : |
65 | theorem | | ⊢ |
| proveit.numbers.division.frac_one_denom |
66 | instantiation | 102, 89, 76 | ⊢ |
| : , : , : |
67 | instantiation | 102, 100, 77 | ⊢ |
| : , : , : |
68 | instantiation | 102, 84, 78 | ⊢ |
| : , : , : |
69 | instantiation | 79, 81 | ⊢ |
| : |
70 | axiom | | ⊢ |
| proveit.logic.equality.substitution |
71 | instantiation | 80, 81 | ⊢ |
| : |
72 | instantiation | 102, 96, 82 | ⊢ |
| : , : , : |
73 | instantiation | 102, 84, 83 | ⊢ |
| : , : , : |
74 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_nonzero_within_real_nonzero |
75 | instantiation | 102, 84, 85 | ⊢ |
| : , : , : |
76 | instantiation | 102, 96, 86 | ⊢ |
| : , : , : |
77 | instantiation | 102, 103, 87 | ⊢ |
| : , : , : |
78 | instantiation | 102, 93, 88 | ⊢ |
| : , : , : |
79 | theorem | | ⊢ |
| proveit.numbers.multiplication.elim_one_left |
80 | theorem | | ⊢ |
| proveit.numbers.multiplication.elim_one_right |
81 | instantiation | 102, 89, 90 | ⊢ |
| : , : , : |
82 | instantiation | 102, 100, 91 | ⊢ |
| : , : , : |
83 | instantiation | 102, 93, 92 | ⊢ |
| : , : , : |
84 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.nonzero_int_within_rational_nonzero |
85 | instantiation | 102, 93, 94 | ⊢ |
| : , : , : |
86 | instantiation | 102, 100, 95 | ⊢ |
| : , : , : |
87 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
88 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat3 |
89 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
90 | instantiation | 102, 96, 97 | ⊢ |
| : , : , : |
91 | instantiation | 102, 103, 98 | ⊢ |
| : , : , : |
92 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat2 |
93 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_pos_within_nonzero_int |
94 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat1 |
95 | instantiation | 102, 103, 99 | ⊢ |
| : , : , : |
96 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
97 | instantiation | 102, 100, 101 | ⊢ |
| : , : , : |
98 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat4 |
99 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
100 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
101 | instantiation | 102, 103, 104 | ⊢ |
| : , : , : |
102 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
103 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
104 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat3 |
*equality replacement requirements |