logo

Expression of type ExprTuple

from the theory of proveit.numbers.division

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprTuple, a, b, c, d
from proveit.numbers import Add, Mult, frac
In [2]:
# build up the expression from sub-expressions
sub_expr1 = Add(a, b)
sub_expr2 = Add(b, d)
expr = ExprTuple(frac(Mult(c, sub_expr1), Mult(c, sub_expr2)), frac(sub_expr1, sub_expr2))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(\frac{c \cdot \left(a + b\right)}{c \cdot \left(b + d\right)}, \frac{a + b}{b + d}\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
wrap_positionsposition(s) at which wrapping is to occur; 'n' is after the nth comma.()()('with_wrapping_at',)
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'leftleft('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1, 2
1Operationoperator: 4
operands: 3
2Operationoperator: 4
operands: 5
3ExprTuple6, 7
4Literal
5ExprTuple11, 13
6Operationoperator: 9
operands: 8
7Operationoperator: 9
operands: 10
8ExprTuple12, 11
9Literal
10ExprTuple12, 13
11Operationoperator: 15
operands: 14
12Variable
13Operationoperator: 15
operands: 16
14ExprTuple17, 18
15Literal
16ExprTuple18, 19
17Variable
18Variable
19Variable