logo

Show the Proof

In [1]:
import proveit
# Automation is not needed when only showing a stored proof:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%show_proof
Out[1]:
 step typerequirementsstatement
0instantiation1, 2, 3, 4, 5*, , , , ,  ⊢  
  : , :
1theorem  ⊢  
 proveit.numbers.division.div_as_mult
2instantiation7, 6, 18, ,  ⊢  
  : , :
3instantiation7, 21, 24,  ⊢  
  : , :
4instantiation8, 9, 10, 11, 12, , ,  ⊢  
  : , :
5instantiation13, 21, 24, 14, 22, 25, , ,  ⊢  
  : , : , :
6instantiation15, 16, 17, 21, 18, 19, ,  ⊢  
  : , :
7theorem  ⊢  
 proveit.numbers.multiplication.mult_complex_closure_bin
8theorem  ⊢  
 proveit.numbers.multiplication.mult_not_eq_zero
9theorem  ⊢  
 proveit.numbers.numerals.decimals.nat2
10instantiation20  ⊢  
  : , :
11instantiation23, 21, 22,  ⊢  
  :
12instantiation23, 24, 25,  ⊢  
  :
13theorem  ⊢  
 proveit.numbers.exponentiation.real_power_of_product
14instantiation26, 27  ⊢  
  :
15theorem  ⊢  
 proveit.numbers.addition.add_complex_closure
16theorem  ⊢  
 proveit.numbers.numerals.decimals.nat3
17instantiation28  ⊢  
  : , : , :
18assumption  ⊢  
19assumption  ⊢  
20theorem  ⊢  
 proveit.numbers.numerals.decimals.tuple_len_2_typical_eq
21assumption  ⊢  
22assumption  ⊢  
23theorem  ⊢  
 proveit.numbers.number_sets.complex_numbers.nonzero_complex_is_complex_nonzero
24assumption  ⊢  
25assumption  ⊢  
26theorem  ⊢  
 proveit.numbers.negation.real_closure
27instantiation33, 29, 30  ⊢  
  : , : , :
28theorem  ⊢  
 proveit.numbers.numerals.decimals.tuple_len_3_typical_eq
29theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.rational_within_real
30instantiation33, 31, 32  ⊢  
  : , : , :
31theorem  ⊢  
 proveit.numbers.number_sets.rational_numbers.int_within_rational
32instantiation33, 34, 35  ⊢  
  : , : , :
33theorem  ⊢  
 proveit.logic.sets.inclusion.superset_membership_from_proper_subset
34theorem  ⊢  
 proveit.numbers.number_sets.integers.nat_within_int
35theorem  ⊢  
 proveit.numbers.numerals.decimals.nat1
*equality replacement requirements