logo

Expression of type ExprTuple

from the theory of proveit.numbers.division

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprTuple, c
from proveit.numbers import Exp, Mult, Neg, frac, one, three, two
In [2]:
# build up the expression from sub-expressions
sub_expr1 = Neg(one)
expr = ExprTuple(Exp(Mult(frac(two, three), c), sub_expr1), Mult(frac(three, two), Exp(c, sub_expr1)))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(\left(\frac{2}{3} \cdot c\right)^{-1}, \frac{3}{2} \cdot c^{-1}\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
wrap_positionsposition(s) at which wrapping is to occur; 'n' is after the nth comma.()()('with_wrapping_at',)
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'leftleft('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1, 2
1Operationoperator: 11
operands: 3
2Operationoperator: 8
operands: 4
3ExprTuple5, 15
4ExprTuple6, 7
5Operationoperator: 8
operands: 9
6Operationoperator: 16
operands: 10
7Operationoperator: 11
operands: 12
8Literal
9ExprTuple13, 14
10ExprTuple21, 20
11Literal
12ExprTuple14, 15
13Operationoperator: 16
operands: 17
14Variable
15Operationoperator: 18
operand: 22
16Literal
17ExprTuple20, 21
18Literal
19ExprTuple22
20Literal
21Literal
22Literal