logo

Expression of type Lambda

from the theory of proveit.numbers.addition

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import Conditional, Lambda, b
from proveit.core_expr_types import a_1_to_i, c_1_to_j
from proveit.logic import InSet
from proveit.numbers import Add, Real, greater_eq
In [2]:
# build up the expression from sub-expressions
expr = Lambda(b, Conditional(greater_eq(Add(a_1_to_i, b, c_1_to_j), b), InSet(b, Real)))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
b \mapsto \left\{\left(a_{1} +  a_{2} +  \ldots +  a_{i} + b+ c_{1} +  c_{2} +  \ldots +  c_{j}\right) \geq b \textrm{ if } b \in \mathbb{R}\right..
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Lambdaparameter: 14
body: 2
1ExprTuple14
2Conditionalvalue: 3
condition: 4
3Operationoperator: 5
operands: 6
4Operationoperator: 7
operands: 8
5Literal
6ExprTuple14, 9
7Literal
8ExprTuple14, 10
9Operationoperator: 11
operands: 12
10Literal
11Literal
12ExprTuple13, 14, 15
13ExprRangelambda_map: 16
start_index: 19
end_index: 17
14Variable
15ExprRangelambda_map: 18
start_index: 19
end_index: 20
16Lambdaparameter: 26
body: 21
17Variable
18Lambdaparameter: 26
body: 22
19Literal
20Variable
21IndexedVarvariable: 23
index: 26
22IndexedVarvariable: 24
index: 26
23Variable
24Variable
25ExprTuple26
26Variable