logo

Expression of type ExprTuple

from the theory of proveit.numbers.addition

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprTuple, a, b, c, d
from proveit.numbers import Add, Mult, Neg, frac, two
In [2]:
# build up the expression from sub-expressions
sub_expr1 = frac(a, two)
expr = ExprTuple(Add(d, c, Mult(two, b), c, sub_expr1), Add(a, Neg(sub_expr1), b, d, b, Mult(two, c)))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(d + c + \left(2 \cdot b\right) + c + \frac{a}{2}, a - \frac{a}{2} + b + d + b + \left(2 \cdot c\right)\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
wrap_positionsposition(s) at which wrapping is to occur; 'n' is after the nth comma.()()('with_wrapping_at',)
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'leftleft('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1, 2
1Operationoperator: 4
operands: 3
2Operationoperator: 4
operands: 5
3ExprTuple8, 17, 6, 17, 16
4Literal
5ExprTuple20, 7, 15, 8, 15, 9
6Operationoperator: 13
operands: 10
7Operationoperator: 11
operand: 16
8Variable
9Operationoperator: 13
operands: 14
10ExprTuple21, 15
11Literal
12ExprTuple16
13Literal
14ExprTuple21, 17
15Variable
16Operationoperator: 18
operands: 19
17Variable
18Literal
19ExprTuple20, 21
20Variable
21Literal