| step type | requirements | statement |
0 | instantiation | 1, 2, 3, 4 | , ⊢ |
| : , : , : , : |
1 | theorem | | ⊢ |
| proveit.logic.equality.four_chain_transitivity |
2 | instantiation | 44, 5, 6 | , ⊢ |
| : , : , : |
3 | instantiation | 28, 69, 65, 66, 7, 10, 31, 41, 17, 18, 52, 8* | , ⊢ |
| : , : , : , : , : , : |
4 | instantiation | 28, 66, 35, 9, 10, 36, 31, 11, 52, 12* | , ⊢ |
| : , : , : , : , : , : |
5 | instantiation | 15, 66, 69, 13, 14, 31, 41, 52, 17, 18 | , ⊢ |
| : , : , : , : , : , : , : |
6 | instantiation | 15, 65, 69, 16, 31, 41, 17, 52, 18 | , ⊢ |
| : , : , : , : , : , : , : |
7 | instantiation | 40 | ⊢ |
| : , : , : |
8 | instantiation | 22, 19, 20* | ⊢ |
| : , : |
9 | instantiation | 48 | ⊢ |
| : , : |
10 | instantiation | 48 | ⊢ |
| : , : |
11 | instantiation | 25, 21, 41 | ⊢ |
| : , : |
12 | instantiation | 22, 23, 24* | ⊢ |
| : , : |
13 | instantiation | 48 | ⊢ |
| : , : |
14 | instantiation | 48 | ⊢ |
| : , : |
15 | theorem | | ⊢ |
| proveit.numbers.addition.leftward_commutation |
16 | instantiation | 40 | ⊢ |
| : , : , : |
17 | instantiation | 25, 30, 41 | ⊢ |
| : , : |
18 | instantiation | 25, 31, 41 | ⊢ |
| : , : |
19 | instantiation | 34, 35, 65, 69, 36, 26, 38, 30, 31, 41, 27* | ⊢ |
| : , : , : , : , : , : |
20 | instantiation | 28, 35, 66, 69, 36, 29, 38, 30, 31, 32* | ⊢ |
| : , : , : , : , : , : |
21 | instantiation | 67, 49, 33 | ⊢ |
| : , : , : |
22 | theorem | | ⊢ |
| proveit.logic.equality.equals_reversal |
23 | instantiation | 34, 35, 66, 69, 36, 37, 38, 52, 39* | ⊢ |
| : , : , : , : , : , : |
24 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_1_1 |
25 | theorem | | ⊢ |
| proveit.numbers.multiplication.mult_complex_closure_bin |
26 | instantiation | 40 | ⊢ |
| : , : , : |
27 | instantiation | 51, 41 | ⊢ |
| : |
28 | theorem | | ⊢ |
| proveit.numbers.addition.association |
29 | instantiation | 48 | ⊢ |
| : , : |
30 | instantiation | 67, 49, 42 | ⊢ |
| : , : , : |
31 | instantiation | 67, 49, 43 | ⊢ |
| : , : , : |
32 | instantiation | 44, 45, 46 | ⊢ |
| : , : , : |
33 | instantiation | 67, 58, 47 | ⊢ |
| : , : , : |
34 | theorem | | ⊢ |
| proveit.numbers.multiplication.distribute_through_sum |
35 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
36 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
37 | instantiation | 48 | ⊢ |
| : , : |
38 | instantiation | 67, 49, 50 | ⊢ |
| : , : , : |
39 | instantiation | 51, 52 | ⊢ |
| : |
40 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
41 | assumption | | ⊢ |
42 | instantiation | 67, 58, 53 | ⊢ |
| : , : , : |
43 | instantiation | 67, 58, 54 | ⊢ |
| : , : , : |
44 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
45 | instantiation | 55, 56 | ⊢ |
| : , : , : |
46 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_4_2 |
47 | instantiation | 67, 63, 57 | ⊢ |
| : , : , : |
48 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
49 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
50 | instantiation | 67, 58, 59 | ⊢ |
| : , : , : |
51 | theorem | | ⊢ |
| proveit.numbers.multiplication.elim_one_left |
52 | assumption | | ⊢ |
53 | instantiation | 67, 63, 60 | ⊢ |
| : , : , : |
54 | instantiation | 67, 63, 61 | ⊢ |
| : , : , : |
55 | axiom | | ⊢ |
| proveit.logic.equality.substitution |
56 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_1_3 |
57 | instantiation | 67, 68, 62 | ⊢ |
| : , : , : |
58 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
59 | instantiation | 67, 63, 64 | ⊢ |
| : , : , : |
60 | instantiation | 67, 68, 65 | ⊢ |
| : , : , : |
61 | instantiation | 67, 68, 66 | ⊢ |
| : , : , : |
62 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat6 |
63 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
64 | instantiation | 67, 68, 69 | ⊢ |
| : , : , : |
65 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat3 |
66 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
67 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
68 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
69 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
*equality replacement requirements |