| | step type | requirements | statement |
| 0 | instantiation | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11* | , , ⊢  |
| | : , : , : , : , : , :  |
| 1 | reference | 38 | ⊢  |
| 2 | reference | 39 | ⊢  |
| 3 | reference | 17 | ⊢  |
| 4 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat6 |
| 5 | reference | 40 | ⊢  |
| 6 | instantiation | 22 | ⊢  |
| | : , : , : , : , :  |
| 7 | instantiation | 12 | ⊢  |
| | : , : , : , : , : , :  |
| 8 | reference | 24 | ⊢  |
| 9 | assumption | | ⊢  |
| 10 | assumption | | ⊢  |
| 11 | instantiation | 13, 14, 15* | ⊢  |
| | : , :  |
| 12 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_6_typical_eq |
| 13 | theorem | | ⊢  |
| | proveit.logic.equality.equals_reversal |
| 14 | instantiation | 16, 39, 17, 65, 40, 18, 43, 24, 19* | ⊢  |
| | : , : , : , : , : , :  |
| 15 | instantiation | 38, 39, 53, 62, 40, 30, 20, 43, 21* | ⊢  |
| | : , : , : , : , : , :  |
| 16 | theorem | | ⊢  |
| | proveit.numbers.multiplication.distribute_through_sum |
| 17 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat5 |
| 18 | instantiation | 22 | ⊢  |
| | : , : , : , : , :  |
| 19 | instantiation | 23, 24 | ⊢  |
| | :  |
| 20 | instantiation | 25 | ⊢  |
| | : , : , :  |
| 21 | instantiation | 50, 26, 27 | ⊢  |
| | : , : , :  |
| 22 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_5_typical_eq |
| 23 | theorem | | ⊢  |
| | proveit.numbers.multiplication.elim_one_left |
| 24 | assumption | | ⊢  |
| 25 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
| 26 | instantiation | 57, 28 | ⊢  |
| | : , : , :  |
| 27 | instantiation | 38, 39, 53, 40, 29, 30, 31, 43, 32* | ⊢  |
| | : , : , : , : , : , :  |
| 28 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.add_1_1 |
| 29 | instantiation | 46 | ⊢  |
| | : , :  |
| 30 | instantiation | 46 | ⊢  |
| | : , :  |
| 31 | instantiation | 63, 48, 33 | ⊢  |
| | : , : , :  |
| 32 | instantiation | 50, 34, 35 | ⊢  |
| | : , : , :  |
| 33 | instantiation | 63, 55, 36 | ⊢  |
| | : , : , :  |
| 34 | instantiation | 57, 37 | ⊢  |
| | : , : , :  |
| 35 | instantiation | 38, 39, 53, 65, 40, 41, 42, 43, 44* | ⊢  |
| | : , : , : , : , : , :  |
| 36 | instantiation | 63, 60, 45 | ⊢  |
| | : , : , :  |
| 37 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.add_2_1 |
| 38 | theorem | | ⊢  |
| | proveit.numbers.addition.association |
| 39 | axiom | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.zero_in_nats |
| 40 | theorem | | ⊢  |
| | proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
| 41 | instantiation | 46 | ⊢  |
| | : , :  |
| 42 | instantiation | 63, 48, 47 | ⊢  |
| | : , : , :  |
| 43 | instantiation | 63, 48, 49 | ⊢  |
| | : , : , :  |
| 44 | instantiation | 50, 51, 52 | ⊢  |
| | : , : , :  |
| 45 | instantiation | 63, 64, 53 | ⊢  |
| | : , : , :  |
| 46 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
| 47 | instantiation | 63, 55, 54 | ⊢  |
| | : , : , :  |
| 48 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.real_within_complex |
| 49 | instantiation | 63, 55, 56 | ⊢  |
| | : , : , :  |
| 50 | axiom | | ⊢  |
| | proveit.logic.equality.equals_transitivity |
| 51 | instantiation | 57, 58 | ⊢  |
| | : , : , :  |
| 52 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.add_4_1 |
| 53 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat2 |
| 54 | instantiation | 63, 60, 59 | ⊢  |
| | : , : , :  |
| 55 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.rational_within_real |
| 56 | instantiation | 63, 60, 61 | ⊢  |
| | : , : , :  |
| 57 | axiom | | ⊢  |
| | proveit.logic.equality.substitution |
| 58 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.add_3_1 |
| 59 | instantiation | 63, 64, 62 | ⊢  |
| | : , : , :  |
| 60 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.int_within_rational |
| 61 | instantiation | 63, 64, 65 | ⊢  |
| | : , : , :  |
| 62 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat3 |
| 63 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
| 64 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nat_within_int |
| 65 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat1 |
| *equality replacement requirements |