| | step type | requirements | statement |
| 0 | instantiation | 1, 2, 3, 4 | , , , , , ⊢  |
| | : , : , : , :  |
| 1 | theorem | | ⊢  |
| | proveit.logic.equality.four_chain_transitivity |
| 2 | instantiation | 10, 38, 7, 6, 9, 5, 17, 19, 20, 21, 22, 23, 24, 18 | , , , , , ⊢  |
| | : , : , : , : , : , : , :  |
| 3 | instantiation | 10, 6, 7, 38, 8, 9, 17, 19, 20, 21, 22, 23, 24, 18 | , , , , , ⊢  |
| | : , : , : , : , : , : , :  |
| 4 | instantiation | 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 | , , , , , ⊢  |
| | : , : , : , : , : , : , :  |
| 5 | instantiation | 25 | ⊢  |
| | : , :  |
| 6 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat2 |
| 7 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat6 |
| 8 | instantiation | 25 | ⊢  |
| | : , :  |
| 9 | instantiation | 26 | ⊢  |
| | : , : , : , : , : , :  |
| 10 | theorem | | ⊢  |
| | proveit.numbers.addition.leftward_commutation |
| 11 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat5 |
| 12 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat4 |
| 13 | axiom | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.zero_in_nats |
| 14 | instantiation | 27 | ⊢  |
| | : , : , : , : , :  |
| 15 | instantiation | 28 | ⊢  |
| | : , : , : , :  |
| 16 | theorem | | ⊢  |
| | proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
| 17 | instantiation | 39, 30, 29 | ⊢  |
| | : , : , :  |
| 18 | instantiation | 39, 30, 31 | ⊢  |
| | : , : , :  |
| 19 | assumption | | ⊢  |
| 20 | assumption | | ⊢  |
| 21 | assumption | | ⊢  |
| 22 | assumption | | ⊢  |
| 23 | assumption | | ⊢  |
| 24 | assumption | | ⊢  |
| 25 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
| 26 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_6_typical_eq |
| 27 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_5_typical_eq |
| 28 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_4_typical_eq |
| 29 | instantiation | 39, 33, 32 | ⊢  |
| | : , : , :  |
| 30 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.real_within_complex |
| 31 | instantiation | 39, 33, 34 | ⊢  |
| | : , : , :  |
| 32 | instantiation | 39, 36, 35 | ⊢  |
| | : , : , :  |
| 33 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.rational_within_real |
| 34 | instantiation | 39, 36, 37 | ⊢  |
| | : , : , :  |
| 35 | instantiation | 39, 40, 38 | ⊢  |
| | : , : , :  |
| 36 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.int_within_rational |
| 37 | instantiation | 39, 40, 41 | ⊢  |
| | : , : , :  |
| 38 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat1 |
| 39 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
| 40 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nat_within_int |
| 41 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat3 |