| step type | requirements | statement |
0 | instantiation | 1, 2, 3, 4 | , , , , , ⊢ |
| : , : , : , : |
1 | theorem | | ⊢ |
| proveit.logic.equality.four_chain_transitivity |
2 | instantiation | 10, 38, 7, 6, 9, 5, 17, 19, 20, 21, 22, 23, 24, 18 | , , , , , ⊢ |
| : , : , : , : , : , : , : |
3 | instantiation | 10, 6, 7, 38, 8, 9, 17, 19, 20, 21, 22, 23, 24, 18 | , , , , , ⊢ |
| : , : , : , : , : , : , : |
4 | instantiation | 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 | , , , , , ⊢ |
| : , : , : , : , : , : , : |
5 | instantiation | 25 | ⊢ |
| : , : |
6 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
7 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat6 |
8 | instantiation | 25 | ⊢ |
| : , : |
9 | instantiation | 26 | ⊢ |
| : , : , : , : , : , : |
10 | theorem | | ⊢ |
| proveit.numbers.addition.leftward_commutation |
11 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat5 |
12 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat4 |
13 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
14 | instantiation | 27 | ⊢ |
| : , : , : , : , : |
15 | instantiation | 28 | ⊢ |
| : , : , : , : |
16 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
17 | instantiation | 39, 30, 29 | ⊢ |
| : , : , : |
18 | instantiation | 39, 30, 31 | ⊢ |
| : , : , : |
19 | assumption | | ⊢ |
20 | assumption | | ⊢ |
21 | assumption | | ⊢ |
22 | assumption | | ⊢ |
23 | assumption | | ⊢ |
24 | assumption | | ⊢ |
25 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
26 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_6_typical_eq |
27 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_5_typical_eq |
28 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_4_typical_eq |
29 | instantiation | 39, 33, 32 | ⊢ |
| : , : , : |
30 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
31 | instantiation | 39, 33, 34 | ⊢ |
| : , : , : |
32 | instantiation | 39, 36, 35 | ⊢ |
| : , : , : |
33 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
34 | instantiation | 39, 36, 37 | ⊢ |
| : , : , : |
35 | instantiation | 39, 40, 38 | ⊢ |
| : , : , : |
36 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
37 | instantiation | 39, 40, 41 | ⊢ |
| : , : , : |
38 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
39 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
40 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
41 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat3 |