| step type | requirements | statement |
0 | instantiation | 1, 2, 3 | , , ⊢ |
| : , : , : |
1 | reference | 41 | ⊢ |
2 | instantiation | 4, 5, 6, 7 | , , ⊢ |
| : , : , : , : |
3 | instantiation | 28, 29, 25, 16, 31, 8, 9, 37, 18, 19, 10* | , , ⊢ |
| : , : , : , : , : , : |
4 | theorem | | ⊢ |
| proveit.logic.equality.four_chain_transitivity |
5 | instantiation | 15, 52, 30, 25, 11, 12, 37, 18, 19 | , , ⊢ |
| : , : , : , : , : , : , : |
6 | instantiation | 15, 30, 25, 52, 13, 14, 37, 18, 19 | , , ⊢ |
| : , : , : , : , : , : , : |
7 | instantiation | 15, 16, 52, 17, 37, 18, 19 | , , ⊢ |
| : , : , : , : , : , : , : |
8 | instantiation | 35 | ⊢ |
| : , : , : |
9 | instantiation | 23 | ⊢ |
| : , : , : , : |
10 | instantiation | 20, 21, 22* | ⊢ |
| : , : |
11 | instantiation | 38 | ⊢ |
| : , : |
12 | instantiation | 35 | ⊢ |
| : , : , : |
13 | instantiation | 38 | ⊢ |
| : , : |
14 | instantiation | 35 | ⊢ |
| : , : , : |
15 | theorem | | ⊢ |
| proveit.numbers.addition.leftward_commutation |
16 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat4 |
17 | instantiation | 23 | ⊢ |
| : , : , : , : |
18 | assumption | | ⊢ |
19 | assumption | | ⊢ |
20 | theorem | | ⊢ |
| proveit.logic.equality.equals_reversal |
21 | instantiation | 24, 29, 25, 52, 31, 26, 33, 37, 27* | ⊢ |
| : , : , : , : , : , : |
22 | instantiation | 28, 29, 30, 52, 31, 32, 33, 34* | ⊢ |
| : , : , : , : , : , : |
23 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_4_typical_eq |
24 | theorem | | ⊢ |
| proveit.numbers.multiplication.distribute_through_sum |
25 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat3 |
26 | instantiation | 35 | ⊢ |
| : , : , : |
27 | instantiation | 36, 37 | ⊢ |
| : |
28 | theorem | | ⊢ |
| proveit.numbers.addition.association |
29 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
30 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
31 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
32 | instantiation | 38 | ⊢ |
| : , : |
33 | instantiation | 50, 39, 40 | ⊢ |
| : , : , : |
34 | instantiation | 41, 42, 43 | ⊢ |
| : , : , : |
35 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
36 | theorem | | ⊢ |
| proveit.numbers.multiplication.elim_one_left |
37 | assumption | | ⊢ |
38 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
39 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
40 | instantiation | 50, 44, 45 | ⊢ |
| : , : , : |
41 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
42 | instantiation | 46, 47 | ⊢ |
| : , : , : |
43 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_2_1 |
44 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
45 | instantiation | 50, 48, 49 | ⊢ |
| : , : , : |
46 | axiom | | ⊢ |
| proveit.logic.equality.substitution |
47 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_1_1 |
48 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
49 | instantiation | 50, 51, 52 | ⊢ |
| : , : , : |
50 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
51 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
52 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
*equality replacement requirements |