logo

Show the Proof

In [1]:
import proveit
# Automation is not needed when only showing a stored proof:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%show_proof
Out[1]:
 step typerequirementsstatement
0instantiation1, 2, 3, 4, 5, 6*, 7*  ⊢  
  : , : , :
1theorem  ⊢  
 proveit.numbers.addition.strong_bound_via_left_term_bound
2reference27  ⊢  
3theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.zero_is_real
4instantiation62, 54, 8  ⊢  
  : , : , :
5instantiation9, 10  ⊢  
  :
6instantiation11, 12, 13  ⊢  
  : , : , :
7instantiation14, 15, 16, 17  ⊢  
  : , : , : , :
8instantiation62, 59, 18  ⊢  
  : , : , :
9theorem  ⊢  
 proveit.numbers.number_sets.natural_numbers.natural_pos_is_pos
10theorem  ⊢  
 proveit.numbers.numerals.decimals.posnat4
11theorem  ⊢  
 proveit.logic.equality.sub_right_side_into
12instantiation19, 21  ⊢  
  :
13instantiation20, 21, 22  ⊢  
  : , :
14theorem  ⊢  
 proveit.logic.equality.four_chain_transitivity
15theorem  ⊢  
 proveit.numbers.numerals.decimals.add_4_3
16instantiation23  ⊢  
  :
17instantiation24, 25  ⊢  
  : , :
18instantiation62, 63, 26  ⊢  
  : , : , :
19theorem  ⊢  
 proveit.numbers.addition.elim_zero_right
20theorem  ⊢  
 proveit.numbers.addition.commutation
21instantiation62, 47, 27  ⊢  
  : , : , :
22theorem  ⊢  
 proveit.numbers.number_sets.complex_numbers.zero_is_complex
23axiom  ⊢  
 proveit.logic.equality.equals_reflexivity
24theorem  ⊢  
 proveit.logic.equality.equals_reversal
25instantiation37, 38, 52, 39, 28, 29, 42, 30, 41, 31*  ⊢  
  : , : , : , : , : , :
26theorem  ⊢  
 proveit.numbers.numerals.decimals.nat4
27assumption  ⊢  
28instantiation45  ⊢  
  : , :
29instantiation45  ⊢  
  : , :
30instantiation62, 47, 32  ⊢  
  : , : , :
31instantiation49, 33, 34  ⊢  
  : , : , :
32instantiation62, 54, 35  ⊢  
  : , : , :
33instantiation56, 36  ⊢  
  : , : , :
34instantiation37, 38, 52, 64, 39, 40, 41, 42, 43*  ⊢  
  : , : , : , : , : , :
35instantiation62, 59, 44  ⊢  
  : , : , :
36theorem  ⊢  
 proveit.numbers.numerals.decimals.add_1_2
37theorem  ⊢  
 proveit.numbers.addition.association
38axiom  ⊢  
 proveit.numbers.number_sets.natural_numbers.zero_in_nats
39theorem  ⊢  
 proveit.core_expr_types.tuples.tuple_len_0_typical_eq
40instantiation45  ⊢  
  : , :
41instantiation62, 47, 46  ⊢  
  : , : , :
42instantiation62, 47, 48  ⊢  
  : , : , :
43instantiation49, 50, 51  ⊢  
  : , : , :
44instantiation62, 63, 52  ⊢  
  : , : , :
45theorem  ⊢  
 proveit.numbers.numerals.decimals.tuple_len_2_typical_eq
46instantiation62, 54, 53  ⊢  
  : , : , :
47theorem  ⊢  
 proveit.numbers.number_sets.complex_numbers.real_within_complex
48instantiation62, 54, 55  ⊢  
  : , : , :
49axiom  ⊢  
 proveit.logic.equality.equals_transitivity
50instantiation56, 57  ⊢  
  : , : , :
51theorem  ⊢  
 proveit.numbers.numerals.decimals.add_6_1
52theorem  ⊢  
 proveit.numbers.numerals.decimals.nat2
53instantiation62, 59, 58  ⊢  
  : , : , :
54theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.rational_within_real
55instantiation62, 59, 60  ⊢  
  : , : , :
56axiom  ⊢  
 proveit.logic.equality.substitution
57theorem  ⊢  
 proveit.numbers.numerals.decimals.add_3_3
58instantiation62, 63, 61  ⊢  
  : , : , :
59theorem  ⊢  
 proveit.numbers.number_sets.rational_numbers.int_within_rational
60instantiation62, 63, 64  ⊢  
  : , : , :
61theorem  ⊢  
 proveit.numbers.numerals.decimals.nat3
62theorem  ⊢  
 proveit.logic.sets.inclusion.superset_membership_from_proper_subset
63theorem  ⊢  
 proveit.numbers.number_sets.integers.nat_within_int
64theorem  ⊢  
 proveit.numbers.numerals.decimals.nat1
*equality replacement requirements