logo

Show the Proof

In [1]:
import proveit
# Automation is not needed when only showing a stored proof:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%show_proof
Out[1]:
 step typerequirementsstatement
0instantiation1, 2, 3, 4, 5, 6*, 7*, , , ,  ⊢  
  : , : , :
1theorem  ⊢  
 proveit.numbers.addition.strong_bound_via_left_term_bound
2reference51  ⊢  
3theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.zero_is_real
4reference20  ⊢  
5instantiation8, 9  ⊢  
  :
6instantiation10, 11, 12, 13, , , ,  ⊢  
  : , : , : , :
7instantiation14, 49, 47, 15, 16,  ⊢  
  : , : , :
8theorem  ⊢  
 proveit.numbers.number_sets.natural_numbers.natural_pos_is_pos
9theorem  ⊢  
 proveit.numbers.numerals.decimals.posnat4
10theorem  ⊢  
 proveit.logic.equality.four_chain_transitivity
11instantiation17, 42  ⊢  
  :
12instantiation52  ⊢  
  :
13instantiation18, 19, , , ,  ⊢  
  : , :
14theorem  ⊢  
 proveit.numbers.addition.subtraction.subtract_from_add
15instantiation63, 56, 20  ⊢  
  : , : , :
16theorem  ⊢  
 proveit.numbers.numerals.decimals.add_3_1
17theorem  ⊢  
 proveit.numbers.addition.elim_zero_left
18theorem  ⊢  
 proveit.logic.equality.equals_reversal
19instantiation21, 22, 23, 24, 25, 26, 42, 27, 49, 28*, , , ,  ⊢  
  : , : , : , : , : , :
20instantiation63, 29, 30  ⊢  
  : , : , :
21theorem  ⊢  
 proveit.numbers.addition.association
22axiom  ⊢  
 proveit.numbers.number_sets.natural_numbers.zero_in_nats
23theorem  ⊢  
 proveit.numbers.numerals.decimals.nat2
24theorem  ⊢  
 proveit.core_expr_types.tuples.tuple_len_0_typical_eq
25instantiation31  ⊢  
  : , :
26instantiation31  ⊢  
  : , :
27instantiation63, 56, 32  ⊢  
  : , : , :
28instantiation33, 34, 35, , , ,  ⊢  
  : , : , :
29theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.rational_within_real
30instantiation63, 36, 37  ⊢  
  : , : , :
31theorem  ⊢  
 proveit.numbers.numerals.decimals.tuple_len_2_typical_eq
32instantiation63, 61, 38  ⊢  
  : , : , :
33axiom  ⊢  
 proveit.logic.equality.equals_transitivity
34instantiation39, 40, , , ,  ⊢  
  : , : , :
35instantiation41, 49, 42, 43,  ⊢  
  : , : , :
36theorem  ⊢  
 proveit.numbers.number_sets.rational_numbers.int_within_rational
37instantiation63, 44, 45  ⊢  
  : , : , :
38assumption  ⊢  
39axiom  ⊢  
 proveit.logic.equality.substitution
40instantiation46, 47, 48, 49, 50, ,  ⊢  
  : , : , :
41theorem  ⊢  
 proveit.numbers.addition.subtraction.add_cancel_triple_21
42instantiation63, 56, 51  ⊢  
  : , : , :
43instantiation52  ⊢  
  :
44theorem  ⊢  
 proveit.numbers.number_sets.integers.nat_within_int
45theorem  ⊢  
 proveit.numbers.numerals.decimals.nat4
46theorem  ⊢  
 proveit.numbers.addition.subtraction.negated_add
47instantiation63, 53, 54  ⊢  
  : , : , :
48instantiation63, 56, 55  ⊢  
  : , : , :
49instantiation63, 56, 57  ⊢  
  : , : , :
50theorem  ⊢  
 proveit.numbers.numerals.decimals.add_1_2
51instantiation63, 61, 58  ⊢  
  : , : , :
52axiom  ⊢  
 proveit.logic.equality.equals_reflexivity
53theorem  ⊢  
 proveit.numbers.number_sets.complex_numbers.complex_nonzero_within_complex
54instantiation63, 59, 60  ⊢  
  : , : , :
55instantiation63, 61, 62  ⊢  
  : , : , :
56theorem  ⊢  
 proveit.numbers.number_sets.complex_numbers.real_within_complex
57assumption  ⊢  
58assumption  ⊢  
59theorem  ⊢  
 proveit.numbers.number_sets.complex_numbers.real_nonzero_within_complex_nonzero
60instantiation63, 64, 65  ⊢  
  : , : , :
61theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.real_neg_within_real
62assumption  ⊢  
63theorem  ⊢  
 proveit.logic.sets.inclusion.superset_membership_from_proper_subset
64theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.real_neg_within_real_nonzero
65assumption  ⊢  
*equality replacement requirements