| step type | requirements | statement |
0 | instantiation | 1, 2, 3 | , , ⊢ |
| : , : , : |
1 | reference | 46 | ⊢ |
2 | instantiation | 46, 4, 5 | , , ⊢ |
| : , : , : |
3 | instantiation | 31, 95, 98, 6, 7, 50, 14, 8, 70, 71, 9* | , , ⊢ |
| : , : , : , : , : , : |
4 | instantiation | 46, 10, 11 | , , ⊢ |
| : , : , : |
5 | instantiation | 31, 94, 98, 63, 12, 13, 14, 68, 69, 72, 70, 71, 15* | , , ⊢ |
| : , : , : , : , : , : |
6 | instantiation | 74 | ⊢ |
| : , : |
7 | instantiation | 43 | ⊢ |
| : , : , : |
8 | instantiation | 96, 84, 16 | ⊢ |
| : , : , : |
9 | instantiation | 38, 17, 18* | ⊢ |
| : , : |
10 | instantiation | 46, 19, 20 | , , ⊢ |
| : , : , : |
11 | instantiation | 31, 64, 95, 21, 67, 22, 23, 76, 68, 69, 72, 70, 71, 24* | , , ⊢ |
| : , : , : , : , : , : |
12 | instantiation | 43 | ⊢ |
| : , : , : |
13 | instantiation | 78 | ⊢ |
| : , : , : , : , : |
14 | instantiation | 25, 69, 76 | ⊢ |
| : , : |
15 | instantiation | 31, 64, 95, 94, 67, 26, 68, 69, 72, 27* | ⊢ |
| : , : , : , : , : , : |
16 | instantiation | 96, 88, 28 | ⊢ |
| : , : , : |
17 | instantiation | 52, 64, 98, 94, 67, 29, 68, 70, 30* | ⊢ |
| : , : , : , : , : , : |
18 | instantiation | 31, 64, 95, 94, 67, 53, 68, 32* | ⊢ |
| : , : , : , : , : , : |
19 | instantiation | 46, 33, 34 | , , ⊢ |
| : , : , : |
20 | instantiation | 61, 35, 95, 64, 36, 50, 67, 76, 68, 69, 72, 70, 71 | , , ⊢ |
| : , : , : , : , : , : , : |
21 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat8 |
22 | instantiation | 74 | ⊢ |
| : , : |
23 | instantiation | 37 | ⊢ |
| : , : , : , : , : , : , : , : |
24 | instantiation | 38, 39, 58* | ⊢ |
| : , : |
25 | theorem | | ⊢ |
| proveit.numbers.multiplication.mult_complex_closure_bin |
26 | instantiation | 74 | ⊢ |
| : , : |
27 | instantiation | 46, 40, 41 | ⊢ |
| : , : , : |
28 | instantiation | 96, 92, 42 | ⊢ |
| : , : , : |
29 | instantiation | 43 | ⊢ |
| : , : , : |
30 | instantiation | 75, 70 | ⊢ |
| : |
31 | theorem | | ⊢ |
| proveit.numbers.addition.association |
32 | instantiation | 46, 44, 45 | ⊢ |
| : , : , : |
33 | instantiation | 46, 47, 48 | , , ⊢ |
| : , : , : |
34 | instantiation | 61, 56, 95, 94, 49, 50, 76, 68, 69, 72, 70, 71 | , , ⊢ |
| : , : , : , : , : , : , : |
35 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat7 |
36 | instantiation | 51 | ⊢ |
| : , : , : , : , : , : , : |
37 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_8_typical_eq |
38 | theorem | | ⊢ |
| proveit.logic.equality.equals_reversal |
39 | instantiation | 52, 64, 95, 94, 67, 53, 68, 76, 54* | ⊢ |
| : , : , : , : , : , : |
40 | instantiation | 57, 55 | ⊢ |
| : , : , : |
41 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_3_3 |
42 | instantiation | 96, 97, 56 | ⊢ |
| : , : , : |
43 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
44 | instantiation | 57, 58 | ⊢ |
| : , : , : |
45 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_2_1 |
46 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
47 | instantiation | 61, 94, 62, 59, 60, 76, 68, 69, 70, 71, 72 | , , ⊢ |
| : , : , : , : , : , : , : |
48 | instantiation | 61, 62, 63, 64, 65, 66, 67, 76, 68, 69, 70, 71, 72 | , , ⊢ |
| : , : , : , : , : , : , : |
49 | instantiation | 73 | ⊢ |
| : , : , : , : , : , : |
50 | instantiation | 74 | ⊢ |
| : , : |
51 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_7_typical_eq |
52 | theorem | | ⊢ |
| proveit.numbers.multiplication.distribute_through_sum |
53 | instantiation | 74 | ⊢ |
| : , : |
54 | instantiation | 75, 76 | ⊢ |
| : |
55 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_1_2 |
56 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat6 |
57 | axiom | | ⊢ |
| proveit.logic.equality.substitution |
58 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_1_1 |
59 | instantiation | 77 | ⊢ |
| : , : , : , : |
60 | instantiation | 77 | ⊢ |
| : , : , : , : |
61 | theorem | | ⊢ |
| proveit.numbers.addition.leftward_commutation |
62 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat4 |
63 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat5 |
64 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
65 | instantiation | 77 | ⊢ |
| : , : , : , : |
66 | instantiation | 78 | ⊢ |
| : , : , : , : , : |
67 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
68 | instantiation | 96, 84, 79 | ⊢ |
| : , : , : |
69 | instantiation | 96, 84, 80 | ⊢ |
| : , : , : |
70 | instantiation | 96, 84, 81 | ⊢ |
| : , : , : |
71 | instantiation | 96, 84, 82 | ⊢ |
| : , : , : |
72 | instantiation | 96, 84, 83 | ⊢ |
| : , : , : |
73 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_6_typical_eq |
74 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
75 | theorem | | ⊢ |
| proveit.numbers.multiplication.elim_one_left |
76 | instantiation | 96, 84, 85 | ⊢ |
| : , : , : |
77 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_4_typical_eq |
78 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_5_typical_eq |
79 | instantiation | 96, 88, 86 | ⊢ |
| : , : , : |
80 | instantiation | 96, 88, 87 | ⊢ |
| : , : , : |
81 | assumption | | ⊢ |
82 | assumption | | ⊢ |
83 | instantiation | 96, 88, 89 | ⊢ |
| : , : , : |
84 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
85 | assumption | | ⊢ |
86 | instantiation | 96, 92, 90 | ⊢ |
| : , : , : |
87 | instantiation | 96, 92, 91 | ⊢ |
| : , : , : |
88 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
89 | instantiation | 96, 92, 93 | ⊢ |
| : , : , : |
90 | instantiation | 96, 97, 94 | ⊢ |
| : , : , : |
91 | instantiation | 96, 97, 95 | ⊢ |
| : , : , : |
92 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
93 | instantiation | 96, 97, 98 | ⊢ |
| : , : , : |
94 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
95 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
96 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
97 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
98 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat3 |
*equality replacement requirements |