logo

Expression of type Equals

from the theory of proveit.numbers.addition

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprRange, IndexedVar, Variable, a, b, c, n
from proveit.core_expr_types import a_1_to_n
from proveit.logic import Equals
from proveit.numbers import Add, Neg, subtract, three, two
In [2]:
# build up the expression from sub-expressions
sub_expr1 = Variable("_a", latex_format = r"{_{-}a}")
sub_expr2 = Neg(c)
sub_expr3 = ExprRange(sub_expr1, IndexedVar(a, sub_expr1), three, subtract(n, two))
expr = Equals(Add(Add(a_1_to_n, b), Add(sub_expr2, Add(sub_expr3))), Add(a_1_to_n, b, sub_expr2, sub_expr3))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(\left(a_{1} +  a_{2} +  \ldots +  a_{n} + b\right) + \left(-c + \left(a_{3} +  a_{4} +  \ldots +  a_{n - 2}\right)\right)\right) = \left(a_{1} +  a_{2} +  \ldots +  a_{n} + b - c+ a_{3} +  a_{4} +  \ldots +  a_{n - 2}\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
wrap_positionsposition(s) at which wrapping is to occur; '2 n - 1' is after the nth operand, '2 n' is after the nth operation.()()('with_wrapping_at', 'with_wrap_before_operator', 'with_wrap_after_operator', 'without_wrapping', 'wrap_positions')
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'centercenter('with_justification',)
directionDirection of the relation (normal or reversed)normalnormal('with_direction_reversed', 'is_reversed')
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 1
operands: 2
1Literal
2ExprTuple3, 4
3Operationoperator: 24
operands: 5
4Operationoperator: 24
operands: 6
5ExprTuple7, 8
6ExprTuple11, 12, 13, 19
7Operationoperator: 24
operands: 9
8Operationoperator: 24
operands: 10
9ExprTuple11, 12
10ExprTuple13, 14
11ExprRangelambda_map: 20
start_index: 15
end_index: 28
12Variable
13Operationoperator: 31
operand: 18
14Operationoperator: 24
operands: 17
15Literal
16ExprTuple18
17ExprTuple19
18Variable
19ExprRangelambda_map: 20
start_index: 21
end_index: 22
20Lambdaparameter: 30
body: 23
21Literal
22Operationoperator: 24
operands: 25
23IndexedVarvariable: 26
index: 30
24Literal
25ExprTuple28, 29
26Variable
27ExprTuple30
28Variable
29Operationoperator: 31
operand: 33
30Variable
31Literal
32ExprTuple33
33Literal