logo

Show the Proof

In [1]:
import proveit
# Automation is not needed when only showing a stored proof:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%show_proof
Out[1]:
 step typerequirementsstatement
0instantiation1, 2, 3, 4*, 5*  ⊢  
  : , : , : , :
1theorem  ⊢  
 proveit.numbers.addition.rational_pair_addition
2reference29  ⊢  
3reference31  ⊢  
4instantiation6, 20, 7  ⊢  
  :
5instantiation8, 9, 10  ⊢  
  : , : , :
6theorem  ⊢  
 proveit.numbers.division.frac_cancel_complete
7instantiation11, 12  ⊢  
  :
8axiom  ⊢  
 proveit.logic.equality.equals_transitivity
9instantiation13, 14, 15, 16, 17, 18  ⊢  
  : , : , : , :
10theorem  ⊢  
 proveit.numbers.numerals.decimals.add_1_3
11theorem  ⊢  
 proveit.numbers.number_sets.natural_numbers.nonzero_if_is_nat_pos
12theorem  ⊢  
 proveit.numbers.numerals.decimals.posnat1
13axiom  ⊢  
 proveit.core_expr_types.operations.operands_substitution
14theorem  ⊢  
 proveit.numbers.numerals.decimals.nat2
15instantiation19  ⊢  
  : , :
16instantiation19  ⊢  
  : , :
17instantiation21, 20  ⊢  
  :
18instantiation21, 22  ⊢  
  :
19theorem  ⊢  
 proveit.numbers.numerals.decimals.tuple_len_2_typical_eq
20instantiation33, 24, 23  ⊢  
  : , : , :
21theorem  ⊢  
 proveit.numbers.multiplication.elim_one_right
22instantiation33, 24, 25  ⊢  
  : , : , :
23instantiation33, 27, 26  ⊢  
  : , : , :
24theorem  ⊢  
 proveit.numbers.number_sets.complex_numbers.real_within_complex
25instantiation33, 27, 28  ⊢  
  : , : , :
26instantiation33, 30, 29  ⊢  
  : , : , :
27theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.rational_within_real
28instantiation33, 30, 31  ⊢  
  : , : , :
29instantiation33, 34, 32  ⊢  
  : , : , :
30theorem  ⊢  
 proveit.numbers.number_sets.rational_numbers.int_within_rational
31instantiation33, 34, 35  ⊢  
  : , : , :
32theorem  ⊢  
 proveit.numbers.numerals.decimals.nat1
33theorem  ⊢  
 proveit.logic.sets.inclusion.superset_membership_from_proper_subset
34theorem  ⊢  
 proveit.numbers.number_sets.integers.nat_within_int
35theorem  ⊢  
 proveit.numbers.numerals.decimals.nat3
*equality replacement requirements