logo

Show the Proof

In [1]:
import proveit
# Automation is not needed when only showing a stored proof:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%show_proof
Out[1]:
 step typerequirementsstatement
0instantiation1, 2, 3  ⊢  
  : , : , :
1axiom  ⊢  
 proveit.logic.equality.equals_transitivity
2instantiation4, 15  ⊢  
  : , : , :
3instantiation5, 6, 7*  ⊢  
  : , :
4axiom  ⊢  
 proveit.logic.equality.substitution
5theorem  ⊢  
 proveit.logic.equality.equals_reversal
6instantiation8, 9, 10, 28, 11, 12, 13, 14, 21, 15*  ⊢  
  : , : , : , : , : , :
7theorem  ⊢  
 proveit.numbers.numerals.decimals.add_1_3
8theorem  ⊢  
 proveit.numbers.multiplication.distribute_through_sum
9axiom  ⊢  
 proveit.numbers.number_sets.natural_numbers.zero_in_nats
10theorem  ⊢  
 proveit.numbers.numerals.decimals.nat2
11theorem  ⊢  
 proveit.core_expr_types.tuples.tuple_len_0_typical_eq
12instantiation16  ⊢  
  : , :
13instantiation29, 18, 17  ⊢  
  : , : , :
14instantiation29, 18, 19  ⊢  
  : , : , :
15instantiation20, 21  ⊢  
  :
16theorem  ⊢  
 proveit.numbers.numerals.decimals.tuple_len_2_typical_eq
17instantiation29, 23, 22  ⊢  
  : , : , :
18theorem  ⊢  
 proveit.numbers.number_sets.complex_numbers.real_within_complex
19instantiation29, 23, 24  ⊢  
  : , : , :
20theorem  ⊢  
 proveit.numbers.multiplication.elim_one_left
21assumption  ⊢  
22instantiation29, 26, 25  ⊢  
  : , : , :
23theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.rational_within_real
24instantiation29, 26, 27  ⊢  
  : , : , :
25instantiation29, 30, 28  ⊢  
  : , : , :
26theorem  ⊢  
 proveit.numbers.number_sets.rational_numbers.int_within_rational
27instantiation29, 30, 31  ⊢  
  : , : , :
28theorem  ⊢  
 proveit.numbers.numerals.decimals.nat1
29theorem  ⊢  
 proveit.logic.sets.inclusion.superset_membership_from_proper_subset
30theorem  ⊢  
 proveit.numbers.number_sets.integers.nat_within_int
31theorem  ⊢  
 proveit.numbers.numerals.decimals.nat3
*equality replacement requirements