logo

Expression of type ExprTuple

from the theory of proveit.numbers.addition

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import Conditional, ExprTuple, Lambda, a, b
from proveit.logic import And, Equals, InSet
from proveit.numbers import Add, Natural, one
In [2]:
# build up the expression from sub-expressions
expr = ExprTuple(Lambda([a, b], Conditional(Equals(Add(a, Add(b, one)), Add(Add(a, b), one)), And(InSet(a, Natural), InSet(b, Natural)))))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(\left(a, b\right) \mapsto \left\{\left(a + \left(b + 1\right)\right) = \left(\left(a + b\right) + 1\right) \textrm{ if } a \in \mathbb{N} ,  b \in \mathbb{N}\right..\right)
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1
1Lambdaparameters: 23
body: 2
2Conditionalvalue: 3
condition: 4
3Operationoperator: 5
operands: 6
4Operationoperator: 7
operands: 8
5Literal
6ExprTuple9, 10
7Literal
8ExprTuple11, 12
9Operationoperator: 22
operands: 13
10Operationoperator: 22
operands: 14
11Operationoperator: 16
operands: 15
12Operationoperator: 16
operands: 17
13ExprTuple25, 18
14ExprTuple19, 24
15ExprTuple25, 20
16Literal
17ExprTuple26, 20
18Operationoperator: 22
operands: 21
19Operationoperator: 22
operands: 23
20Literal
21ExprTuple26, 24
22Literal
23ExprTuple25, 26
24Literal
25Variable
26Variable