logo

Expression of type Abs

from the theory of proveit.numbers.absolute_value

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit.core_expr_types import x_1_to_n
from proveit.numbers import Abs, Mult
In [2]:
# build up the expression from sub-expressions
expr = Abs(Mult(x_1_to_n))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left|x_{1} \cdot  x_{2} \cdot  \ldots \cdot  x_{n}\right|
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 1
operand: 3
1Literal
2ExprTuple3
3Operationoperator: 4
operands: 5
4Literal
5ExprTuple6
6ExprRangelambda_map: 7
start_index: 8
end_index: 9
7Lambdaparameter: 13
body: 10
8Literal
9Variable
10IndexedVarvariable: 11
index: 13
11Variable
12ExprTuple13
13Variable