logo

Expression of type ExprTuple

from the theory of proveit.numbers.absolute_value

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprTuple, a, b, theta
from proveit.numbers import Exp, Mult, e, i
In [2]:
# build up the expression from sub-expressions
expr = ExprTuple(Mult(a, Exp(e, Mult(i, theta)), b))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(a \cdot \mathsf{e}^{\mathsf{i} \cdot \theta} \cdot b\right)
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1
1Operationoperator: 10
operands: 2
2ExprTuple3, 4, 5
3Variable
4Operationoperator: 6
operands: 7
5Variable
6Literal
7ExprTuple8, 9
8Literal
9Operationoperator: 10
operands: 11
10Literal
11ExprTuple12, 13
12Literal
13Variable