logo

Expression of type ExprTuple

from the theory of proveit.numbers.absolute_value

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprTuple, r, theta
from proveit.numbers import Exp, Mult, Neg, e, i
In [2]:
# build up the expression from sub-expressions
expr = ExprTuple(Mult(Neg(r), Exp(e, Mult(Neg(theta), i))))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(\left(-r\right) \cdot \mathsf{e}^{\left(-\theta\right) \cdot \mathsf{i}}\right)
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1
1Operationoperator: 11
operands: 2
2ExprTuple3, 4
3Operationoperator: 15
operand: 8
4Operationoperator: 6
operands: 7
5ExprTuple8
6Literal
7ExprTuple9, 10
8Variable
9Literal
10Operationoperator: 11
operands: 12
11Literal
12ExprTuple13, 14
13Operationoperator: 15
operand: 17
14Literal
15Literal
16ExprTuple17
17Variable