logo

Expression of type ExprTuple

from the theory of proveit.numbers.absolute_value

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprTuple, r, theta
from proveit.numbers import Abs, Exp, Mult, e, i
In [2]:
# build up the expression from sub-expressions
expr = ExprTuple(Abs(Mult(r, Exp(e, Mult(i, theta)))), r)
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(\left|r \cdot \mathsf{e}^{\mathsf{i} \cdot \theta}\right|, r\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
wrap_positionsposition(s) at which wrapping is to occur; 'n' is after the nth comma.()()('with_wrapping_at',)
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'leftleft('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1, 6
1Operationoperator: 2
operand: 4
2Literal
3ExprTuple4
4Operationoperator: 12
operands: 5
5ExprTuple6, 7
6Variable
7Operationoperator: 8
operands: 9
8Literal
9ExprTuple10, 11
10Literal
11Operationoperator: 12
operands: 13
12Literal
13ExprTuple14, 15
14Literal
15Variable