logo

Expression of type ExprTuple

from the theory of proveit.numbers.absolute_value

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprTuple, b, c, theta
from proveit.numbers import Abs, Exp, Mult, e, i
In [2]:
# build up the expression from sub-expressions
expr = ExprTuple(Abs(b), Abs(Exp(e, Mult(i, theta))), Abs(c))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(\left|b\right|, \left|\mathsf{e}^{\mathsf{i} \cdot \theta}\right|, \left|c\right|\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
wrap_positionsposition(s) at which wrapping is to occur; 'n' is after the nth comma.()()('with_wrapping_at',)
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'leftleft('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1, 2, 3
1Operationoperator: 6
operand: 8
2Operationoperator: 6
operand: 9
3Operationoperator: 6
operand: 10
4ExprTuple8
5ExprTuple9
6Literal
7ExprTuple10
8Variable
9Operationoperator: 11
operands: 12
10Variable
11Literal
12ExprTuple13, 14
13Literal
14Operationoperator: 15
operands: 16
15Literal
16ExprTuple17, 18
17Literal
18Variable