logo

Expression of type Mult

from the theory of proveit.numbers.absolute_value

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import r, theta
from proveit.numbers import Exp, Mult, Neg, e, i
In [2]:
# build up the expression from sub-expressions
expr = Mult(r, Exp(e, Neg(Mult(i, theta))))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
r \cdot \mathsf{e}^{-\left(\mathsf{i} \cdot \theta\right)}
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
wrap_positionsposition(s) at which wrapping is to occur; '2 n - 1' is after the nth operand, '2 n' is after the nth operation.()()('with_wrapping_at', 'with_wrap_before_operator', 'with_wrap_after_operator', 'without_wrapping', 'wrap_positions')
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'centercenter('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 11
operands: 1
1ExprTuple2, 3
2Variable
3Operationoperator: 4
operands: 5
4Literal
5ExprTuple6, 7
6Literal
7Operationoperator: 8
operand: 10
8Literal
9ExprTuple10
10Operationoperator: 11
operands: 12
11Literal
12ExprTuple13, 14
13Literal
14Variable