logo

Expression of type Abs

from the theory of proveit.numbers.absolute_value

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import r, theta
from proveit.numbers import Abs, Exp, Mult, Neg, e, i
In [2]:
# build up the expression from sub-expressions
expr = Abs(Mult(r, Exp(e, Mult(i, Neg(theta)))))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left|r \cdot \mathsf{e}^{\mathsf{i} \cdot \left(-\theta\right)}\right|
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 1
operand: 3
1Literal
2ExprTuple3
3Operationoperator: 11
operands: 4
4ExprTuple5, 6
5Variable
6Operationoperator: 7
operands: 8
7Literal
8ExprTuple9, 10
9Literal
10Operationoperator: 11
operands: 12
11Literal
12ExprTuple13, 14
13Literal
14Operationoperator: 15
operand: 17
15Literal
16ExprTuple17
17Variable