logo

Show the Proof

In [1]:
import proveit
# Automation is not needed when only showing a stored proof:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%show_proof
Out[1]:
 step typerequirementsstatement
0instantiation1, 2,  ⊢  
  : , :
1theorem  ⊢  
 proveit.numbers.ordering.relax_less
2instantiation3, 4,  ⊢  
  : , :
3theorem  ⊢  
 proveit.numbers.addition.subtraction.neg_difference
4instantiation5, 33, 12, 6, 7, 8*, 9*,  ⊢  
  : , : , :
5theorem  ⊢  
 proveit.numbers.addition.strong_bound_via_left_term_bound
6instantiation47, 40, 10  ⊢  
  : , : , :
7instantiation11, 12, 34, 36, 13, 14  ⊢  
  : , : , :
8instantiation15, 27  ⊢  
  :
9instantiation16, 17, 18  ⊢  
  : , : , :
10assumption  ⊢  
11theorem  ⊢  
 proveit.numbers.ordering.less_eq_add_right_strong
12theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.zero_is_real
13instantiation19, 44  ⊢  
  :
14instantiation20, 21  ⊢  
  :
15theorem  ⊢  
 proveit.numbers.addition.elim_zero_left
16axiom  ⊢  
 proveit.logic.equality.equals_transitivity
17instantiation22, 23, 49, 24, 25, 26, 29, 30, 27  ⊢  
  : , : , : , : , : , :
18instantiation28, 29, 30, 31  ⊢  
  : , : , :
19theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.nonneg_if_in_real_nonneg
20theorem  ⊢  
 proveit.numbers.number_sets.natural_numbers.natural_pos_is_pos
21theorem  ⊢  
 proveit.numbers.numerals.decimals.posnat2
22theorem  ⊢  
 proveit.numbers.addition.disassociation
23axiom  ⊢  
 proveit.numbers.number_sets.natural_numbers.zero_in_nats
24theorem  ⊢  
 proveit.numbers.numerals.decimals.nat1
25theorem  ⊢  
 proveit.core_expr_types.tuples.tuple_len_0_typical_eq
26instantiation32  ⊢  
  : , :
27instantiation47, 35, 33  ⊢  
  : , : , :
28theorem  ⊢  
 proveit.numbers.addition.subtraction.add_cancel_triple_13
29instantiation47, 35, 34  ⊢  
  : , : , :
30instantiation47, 35, 36  ⊢  
  : , : , :
31instantiation37  ⊢  
  :
32theorem  ⊢  
 proveit.numbers.numerals.decimals.tuple_len_2_typical_eq
33instantiation47, 38, 39  ⊢  
  : , : , :
34instantiation47, 40, 44  ⊢  
  : , : , :
35theorem  ⊢  
 proveit.numbers.number_sets.complex_numbers.real_within_complex
36instantiation47, 41, 42  ⊢  
  : , : , :
37axiom  ⊢  
 proveit.logic.equality.equals_reflexivity
38theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.real_nonpos_within_real
39instantiation43, 44  ⊢  
  :
40theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.real_nonneg_within_real
41theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.rational_within_real
42instantiation47, 45, 46  ⊢  
  : , : , :
43theorem  ⊢  
 proveit.numbers.negation.real_nonpos_closure
44assumption  ⊢  
45theorem  ⊢  
 proveit.numbers.number_sets.rational_numbers.int_within_rational
46instantiation47, 48, 49  ⊢  
  : , : , :
47theorem  ⊢  
 proveit.logic.sets.inclusion.superset_membership_from_proper_subset
48theorem  ⊢  
 proveit.numbers.number_sets.integers.nat_within_int
49theorem  ⊢  
 proveit.numbers.numerals.decimals.nat2
*equality replacement requirements