| step type | requirements | statement |
0 | instantiation | 1, 2, 3, 4, 5, 6, 7*, 8* | , , , , , , ⊢ |
| : , : , : |
1 | theorem | | ⊢ |
| proveit.numbers.division.div_eq_real |
2 | reference | 68 | ⊢ |
3 | instantiation | 10, 9, 14 | , , , ⊢ |
| : , : , : |
4 | instantiation | 10, 11, 15 | , , , ⊢ |
| : , : , : |
5 | instantiation | 12, 68, 41, 49, 13, 14*, 15* | , , , , , ⊢ |
| : , : , : |
6 | reference | 46 | ⊢ |
7 | instantiation | 42, 16, 17 | , , , , ⊢ |
| : , : , : |
8 | instantiation | 42, 18, 19 | , , , , ⊢ |
| : , : , : |
9 | instantiation | 65, 41, 68 | , , , ⊢ |
| : , : |
10 | theorem | | ⊢ |
| proveit.logic.equality.sub_right_side_into |
11 | instantiation | 65, 49, 68 | , , , ⊢ |
| : , : |
12 | theorem | | ⊢ |
| proveit.numbers.multiplication.right_mult_eq_real |
13 | instantiation | 20, 69, 66, 71, 21 | , , , , ⊢ |
| : , : , : |
14 | instantiation | 22, 57, 56, 55, 59, 51, 61, 52, 60 | , , , ⊢ |
| : , : , : , : , : , : |
15 | instantiation | 22, 57, 56, 55, 59, 58, 61, 62, 60 | , , , ⊢ |
| : , : , : , : , : , : |
16 | instantiation | 42, 23, 24 | , , , , ⊢ |
| : , : , : |
17 | instantiation | 27, 31 | , , ⊢ |
| : |
18 | instantiation | 42, 25, 26 | , , , , ⊢ |
| : , : , : |
19 | instantiation | 27, 37 | , , ⊢ |
| : |
20 | theorem | | ⊢ |
| proveit.numbers.multiplication.left_mult_eq_real |
21 | instantiation | 28, 77, 74, 76, 29 | , , , ⊢ |
| : , : , : |
22 | theorem | | ⊢ |
| proveit.numbers.multiplication.disassociation |
23 | instantiation | 32, 30 | , , , ⊢ |
| : , : , : |
24 | instantiation | 34, 35, 36, 31, 38* | , , , , ⊢ |
| : , : , : |
25 | instantiation | 32, 33 | , , , ⊢ |
| : , : , : |
26 | instantiation | 34, 35, 36, 37, 38* | , , , , ⊢ |
| : , : , : |
27 | theorem | | ⊢ |
| proveit.numbers.division.frac_one_denom |
28 | theorem | | ⊢ |
| proveit.numbers.addition.right_add_eq_real |
29 | assumption | | ⊢ |
30 | instantiation | 42, 39, 40 | , , , ⊢ |
| : , : , : |
31 | instantiation | 78, 70, 41 | , , ⊢ |
| : , : , : |
32 | axiom | | ⊢ |
| proveit.logic.equality.substitution |
33 | instantiation | 42, 43, 44 | , , , ⊢ |
| : , : , : |
34 | theorem | | ⊢ |
| proveit.numbers.division.frac_cancel_left |
35 | instantiation | 45, 60, 46 | , ⊢ |
| : |
36 | instantiation | 78, 47, 48 | ⊢ |
| : , : , : |
37 | instantiation | 78, 70, 49 | , , ⊢ |
| : , : , : |
38 | instantiation | 50, 60 | ⊢ |
| : |
39 | instantiation | 53, 57, 56, 59, 51, 61, 52, 60 | , , , ⊢ |
| : , : , : , : , : , : , : |
40 | instantiation | 54, 55, 56, 57, 51, 59, 60, 61, 52 | , , , ⊢ |
| : , : , : , : , : , : |
41 | instantiation | 65, 69, 66 | , , ⊢ |
| : , : |
42 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
43 | instantiation | 53, 57, 56, 59, 58, 61, 62, 60 | , , , ⊢ |
| : , : , : , : , : , : , : |
44 | instantiation | 54, 55, 56, 57, 58, 59, 60, 61, 62 | , , , ⊢ |
| : , : , : , : , : , : |
45 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.nonzero_complex_is_complex_nonzero |
46 | assumption | | ⊢ |
47 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_nonzero_within_complex_nonzero |
48 | instantiation | 78, 63, 64 | ⊢ |
| : , : , : |
49 | instantiation | 65, 69, 71 | , , ⊢ |
| : , : |
50 | theorem | | ⊢ |
| proveit.numbers.multiplication.elim_one_right |
51 | instantiation | 67 | ⊢ |
| : , : |
52 | instantiation | 78, 70, 66 | , ⊢ |
| : , : , : |
53 | theorem | | ⊢ |
| proveit.numbers.multiplication.leftward_commutation |
54 | theorem | | ⊢ |
| proveit.numbers.multiplication.association |
55 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
56 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
57 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
58 | instantiation | 67 | ⊢ |
| : , : |
59 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
60 | instantiation | 78, 70, 68 | ⊢ |
| : , : , : |
61 | instantiation | 78, 70, 69 | ⊢ |
| : , : , : |
62 | instantiation | 78, 70, 71 | , ⊢ |
| : , : , : |
63 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_nonzero_within_real_nonzero |
64 | instantiation | 78, 72, 73 | ⊢ |
| : , : , : |
65 | theorem | | ⊢ |
| proveit.numbers.multiplication.mult_real_closure_bin |
66 | instantiation | 75, 74, 77 | , ⊢ |
| : , : |
67 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
68 | assumption | | ⊢ |
69 | assumption | | ⊢ |
70 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
71 | instantiation | 75, 76, 77 | , ⊢ |
| : , : |
72 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.nonzero_int_within_rational_nonzero |
73 | instantiation | 78, 79, 80 | ⊢ |
| : , : , : |
74 | assumption | | ⊢ |
75 | theorem | | ⊢ |
| proveit.numbers.addition.add_real_closure_bin |
76 | assumption | | ⊢ |
77 | assumption | | ⊢ |
78 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
79 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_pos_within_nonzero_int |
80 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat1 |
*equality replacement requirements |