logo

Show the Proof

In [1]:
import proveit
# Automation is not needed when only showing a stored proof:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%show_proof
Out[1]:
 step typerequirementsstatement
0instantiation1, 2, 3, 4  ⊢  
  : , :
1theorem  ⊢  
 proveit.numbers.ordering.less_is_not_eq_nat
2reference31  ⊢  
3theorem  ⊢  
 proveit.numbers.numerals.decimals.nat6
4instantiation5, 24, 6, 7, 8, 9*, 10*  ⊢  
  : , : , :
5theorem  ⊢  
 proveit.numbers.addition.strong_bound_via_left_term_bound
6theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.zero_is_real
7instantiation29, 25, 11  ⊢  
  : , : , :
8instantiation12, 13  ⊢  
  :
9instantiation14, 15, 16  ⊢  
  : , : , :
10theorem  ⊢  
 proveit.numbers.numerals.decimals.add_4_2
11instantiation29, 27, 17  ⊢  
  : , : , :
12theorem  ⊢  
 proveit.numbers.number_sets.natural_numbers.natural_pos_is_pos
13theorem  ⊢  
 proveit.numbers.numerals.decimals.posnat4
14theorem  ⊢  
 proveit.logic.equality.sub_right_side_into
15instantiation18, 20  ⊢  
  :
16instantiation19, 20, 21  ⊢  
  : , :
17instantiation29, 30, 22  ⊢  
  : , : , :
18theorem  ⊢  
 proveit.numbers.addition.elim_zero_right
19theorem  ⊢  
 proveit.numbers.addition.commutation
20instantiation29, 23, 24  ⊢  
  : , : , :
21theorem  ⊢  
 proveit.numbers.number_sets.complex_numbers.zero_is_complex
22theorem  ⊢  
 proveit.numbers.numerals.decimals.nat4
23theorem  ⊢  
 proveit.numbers.number_sets.complex_numbers.real_within_complex
24instantiation29, 25, 26  ⊢  
  : , : , :
25theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.rational_within_real
26instantiation29, 27, 28  ⊢  
  : , : , :
27theorem  ⊢  
 proveit.numbers.number_sets.rational_numbers.int_within_rational
28instantiation29, 30, 31  ⊢  
  : , : , :
29theorem  ⊢  
 proveit.logic.sets.inclusion.superset_membership_from_proper_subset
30theorem  ⊢  
 proveit.numbers.number_sets.integers.nat_within_int
31theorem  ⊢  
 proveit.numbers.numerals.decimals.nat2
*equality replacement requirements