logo

Show the Proof

In [1]:
import proveit
# Automation is not needed when only showing a stored proof:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%show_proof
Out[1]:
 step typerequirementsstatement
0instantiation1, 2, 3  ⊢  
  : , : , :
1axiom  ⊢  
 proveit.logic.equality.equals_transitivity
2instantiation4, 5  ⊢  
  : , : , :
3axiom  ⊢  
 proveit.logic.booleans.negation.not_f
4axiom  ⊢  
 proveit.logic.equality.substitution
5instantiation6, 7  ⊢  
  :
6axiom  ⊢  
 proveit.logic.booleans.negation.negation_elim
7instantiation8, 9  ⊢  
  : , :
8theorem  ⊢  
 proveit.logic.equality.unfold_not_equals
9instantiation10, 35, 11, 12  ⊢  
  : , :
10theorem  ⊢  
 proveit.numbers.ordering.less_is_not_eq_nat
11theorem  ⊢  
 proveit.numbers.numerals.decimals.nat4
12instantiation13, 28, 14, 15, 16*, 17*  ⊢  
  : , : , :
13theorem  ⊢  
 proveit.numbers.addition.strong_bound_via_left_term_bound
14theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.zero_is_real
15instantiation18, 19  ⊢  
  :
16instantiation20, 21, 22  ⊢  
  : , : , :
17theorem  ⊢  
 proveit.numbers.numerals.decimals.add_2_2
18theorem  ⊢  
 proveit.numbers.number_sets.natural_numbers.natural_pos_is_pos
19theorem  ⊢  
 proveit.numbers.numerals.decimals.posnat2
20theorem  ⊢  
 proveit.logic.equality.sub_right_side_into
21instantiation23, 25  ⊢  
  :
22instantiation24, 25, 26  ⊢  
  : , :
23theorem  ⊢  
 proveit.numbers.addition.elim_zero_right
24theorem  ⊢  
 proveit.numbers.addition.commutation
25instantiation33, 27, 28  ⊢  
  : , : , :
26theorem  ⊢  
 proveit.numbers.number_sets.complex_numbers.zero_is_complex
27theorem  ⊢  
 proveit.numbers.number_sets.complex_numbers.real_within_complex
28instantiation33, 29, 30  ⊢  
  : , : , :
29theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.rational_within_real
30instantiation33, 31, 32  ⊢  
  : , : , :
31theorem  ⊢  
 proveit.numbers.number_sets.rational_numbers.int_within_rational
32instantiation33, 34, 35  ⊢  
  : , : , :
33theorem  ⊢  
 proveit.logic.sets.inclusion.superset_membership_from_proper_subset
34theorem  ⊢  
 proveit.numbers.number_sets.integers.nat_within_int
35theorem  ⊢  
 proveit.numbers.numerals.decimals.nat2
*equality replacement requirements