logo

Expression of type Lambda

from the theory of proveit.logic.sets.intersection

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import Conditional, Lambda, Q, R, x
from proveit.core_expr_types import Q__y_1_to_n, R__y_1_to_n, S_1_to_n, y_1_to_n
from proveit.logic import Equals, Exists, Forall, InSet
from proveit.logic.sets import general_intersectall_Ryn
In [2]:
# build up the expression from sub-expressions
sub_expr1 = [y_1_to_n]
sub_expr2 = [S_1_to_n]
expr = Lambda([S_1_to_n, Q, R, x], Conditional(Equals(InSet(x, general_intersectall_Ryn), Forall(instance_param_or_params = sub_expr1, instance_expr = InSet(x, R__y_1_to_n), domains = sub_expr2, condition = Q__y_1_to_n)).with_wrapping_at(1), Exists(instance_param_or_params = sub_expr1, instance_expr = Q__y_1_to_n, domains = sub_expr2)))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(S_{1}, S_{2}, \ldots, S_{n}, Q, R, x\right) \mapsto \left\{\begin{array}{c} \begin{array}{l} \left(x \in \left[\bigcap_{\left(y_{1} \in S_{1}\right), \left(y_{2} \in S_{2}\right), \ldots, \left(y_{n} \in S_{n}\right)~|~Q\left(y_{1}, y_{2}, \ldots, y_{n}\right)}~R\left(y_{1}, y_{2}, \ldots, y_{n}\right)\right]\right) \\  = \left[\forall_{\left(y_{1} \in S_{1}\right), \left(y_{2} \in S_{2}\right), \ldots, \left(y_{n} \in S_{n}\right)~|~Q\left(y_{1}, y_{2}, \ldots, y_{n}\right)}~\left(x \in R\left(y_{1}, y_{2}, \ldots, y_{n}\right)\right)\right] \end{array} \end{array} \textrm{ if } \exists_{\left(y_{1} \in S_{1}\right), \left(y_{2} \in S_{2}\right), \ldots, \left(y_{n} \in S_{n}\right)}~Q\left(y_{1}, y_{2}, \ldots, y_{n}\right)\right..
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Lambdaparameters: 1
body: 2
1ExprTuple3, 38, 34, 30
2Conditionalvalue: 4
condition: 5
3ExprRangelambda_map: 6
start_index: 45
end_index: 46
4Operationoperator: 7
operands: 8
5Operationoperator: 9
operand: 13
6Lambdaparameter: 52
body: 47
7Literal
8ExprTuple11, 12
9Literal
10ExprTuple13
11Operationoperator: 42
operands: 14
12Operationoperator: 15
operand: 19
13Lambdaparameters: 39
body: 17
14ExprTuple30, 18
15Literal
16ExprTuple19
17Conditionalvalue: 36
condition: 20
18Operationoperator: 21
operand: 25
19Lambdaparameters: 39
body: 23
20Operationoperator: 32
operands: 24
21Literal
22ExprTuple25
23Conditionalvalue: 26
condition: 29
24ExprTuple35
25Lambdaparameters: 39
body: 27
26Operationoperator: 42
operands: 28
27Conditionalvalue: 31
condition: 29
28ExprTuple30, 31
29Operationoperator: 32
operands: 33
30Variable
31Operationoperator: 34
operands: 39
32Literal
33ExprTuple35, 36
34Variable
35ExprRangelambda_map: 37
start_index: 45
end_index: 46
36Operationoperator: 38
operands: 39
37Lambdaparameter: 52
body: 40
38Variable
39ExprTuple41
40Operationoperator: 42
operands: 43
41ExprRangelambda_map: 44
start_index: 45
end_index: 46
42Literal
43ExprTuple48, 47
44Lambdaparameter: 52
body: 48
45Literal
46Variable
47IndexedVarvariable: 49
index: 52
48IndexedVarvariable: 50
index: 52
49Variable
50Variable
51ExprTuple52
52Variable