logo
In [1]:
import proveit
from proveit.logic.sets.inclusion  import subset_eq_def
%proving fold_subset_eq
With these allowed/disallowed theorem/theory presumptions (e.g., to avoid circular dependencies), we begin our proof of
fold_subset_eq:
(see dependencies)
fold_subset_eq may now be readily provable (assuming required theorems are usable).  Simply execute "%qed".
In [2]:
subset_eq_def
In [3]:
subset_eq_def_inst = subset_eq_def.instantiate()
subset_eq_def_inst:  ⊢  
In [4]:
subset_eq_def_inst.derive_left_via_equality(assumptions=[subset_eq_def_inst.rhs])
In [5]:
%qed
proveit.logic.sets.inclusion.fold_subset_eq has been proven.
Out[5]:
 step typerequirementsstatement
0generalization1  ⊢  
1instantiation2, 3, 4  ⊢  
  : , :
2theorem  ⊢  
 proveit.logic.equality.lhs_via_equality
3assumption  ⊢  
4instantiation5  ⊢  
  : , :
5axiom  ⊢  
 proveit.logic.sets.inclusion.subset_eq_def