logo

Expression of type Lambda

from the theory of proveit.logic.sets.functions.surjections

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import A, B, Lambda, f
from proveit.logic import And, Equals, Functions, Image, InSet, Surjections
In [2]:
# build up the expression from sub-expressions
expr = Lambda(f, Equals(InSet(f, Surjections(A, B)), And(InSet(f, Functions(A, B)), Equals(Image(f, A), B))).with_wrapping_at(2))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
f \mapsto \left(\begin{array}{c} \begin{array}{l} \left(f \in \left[A \xrightarrow[\text{onto}]{} B\right]\right) =  \\ \left(\left(f \in \left[A \rightarrow B\right]\right) \land \left(f^{\rightarrow}(A) = B\right)\right) \end{array} \end{array}\right)
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Lambdaparameter: 24
body: 2
1ExprTuple24
2Operationoperator: 15
operands: 3
3ExprTuple4, 5
4Operationoperator: 13
operands: 6
5Operationoperator: 7
operands: 8
6ExprTuple24, 9
7Literal
8ExprTuple10, 11
9Operationoperator: 12
operands: 20
10Operationoperator: 13
operands: 14
11Operationoperator: 15
operands: 16
12Literal
13Literal
14ExprTuple24, 17
15Literal
16ExprTuple18, 23
17Operationoperator: 19
operands: 20
18Operationoperator: 21
operands: 22
19Literal
20ExprTuple25, 23
21Literal
22ExprTuple24, 25
23Variable
24Variable
25Variable