| | step type | requirements | statement |
| 0 | instantiation | 1, 2, 3 | ⊢  |
| | : , : , :  |
| 1 | reference | 4 | ⊢  |
| 2 | instantiation | 4, 5, 6 | ⊢  |
| | : , : , :  |
| 3 | instantiation | 7, 8, 9 | ⊢  |
| | : , : , :  |
| 4 | theorem | | ⊢  |
| | proveit.logic.equality.sub_left_side_into |
| 5 | instantiation | 10, 72, 20, 13, 11 | ⊢  |
| | : , : , : , : , :  |
| 6 | instantiation | 12, 72, 17, 20, 13, 18 | ⊢  |
| | : , : , : , : , : , : , :  |
| 7 | axiom | | ⊢  |
| | proveit.logic.equality.equals_transitivity |
| 8 | instantiation | 14, 72, 17, 20, 18, 15 | ⊢  |
| | : , : , : , : , : , :  |
| 9 | instantiation | 16, 17, 71, 18 | ⊢  |
| | : , : , : , : , : , : , :  |
| 10 | theorem | | ⊢  |
| | proveit.logic.sets.enumeration.proper_subset_of_superset |
| 11 | instantiation | 19, 72, 20, 21, 22 | ⊢  |
| | : , : , :  |
| 12 | theorem | | ⊢  |
| | proveit.logic.sets.enumeration.leftward_permutation |
| 13 | instantiation | 23 | ⊢  |
| | : , :  |
| 14 | theorem | | ⊢  |
| | proveit.logic.sets.enumeration.equal_element_equality |
| 15 | assumption | | ⊢  |
| 16 | theorem | | ⊢  |
| | proveit.logic.sets.enumeration.reduction_right |
| 17 | axiom | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.zero_in_nats |
| 18 | theorem | | ⊢  |
| | proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
| 19 | theorem | | ⊢  |
| | proveit.logic.sets.enumeration.nonmembership_fold |
| 20 | instantiation | 23 | ⊢  |
| | : , :  |
| 21 | instantiation | 25, 24 | ⊢  |
| | : , :  |
| 22 | instantiation | 25, 26 | ⊢  |
| | : , :  |
| 23 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
| 24 | instantiation | 28, 71, 29, 27 | ⊢  |
| | : , :  |
| 25 | theorem | | ⊢  |
| | proveit.logic.equality.not_equals_symmetry |
| 26 | instantiation | 28, 72, 29, 30 | ⊢  |
| | : , :  |
| 27 | instantiation | 35, 59, 36, 31, 32, 33*, 34* | ⊢  |
| | : , : , :  |
| 28 | theorem | | ⊢  |
| | proveit.numbers.ordering.less_is_not_eq_nat |
| 29 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat5 |
| 30 | instantiation | 35, 60, 36, 62, 37, 38*, 39* | ⊢  |
| | : , : , :  |
| 31 | instantiation | 73, 65, 40 | ⊢  |
| | : , : , :  |
| 32 | instantiation | 44, 41 | ⊢  |
| | :  |
| 33 | instantiation | 48, 42, 43 | ⊢  |
| | : , : , :  |
| 34 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.add_4_1 |
| 35 | theorem | | ⊢  |
| | proveit.numbers.addition.strong_bound_via_left_term_bound |
| 36 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.zero_is_real |
| 37 | instantiation | 44, 45 | ⊢  |
| | :  |
| 38 | instantiation | 48, 46, 47 | ⊢  |
| | : , : , :  |
| 39 | instantiation | 48, 49, 50 | ⊢  |
| | : , : , :  |
| 40 | instantiation | 73, 69, 51 | ⊢  |
| | : , : , :  |
| 41 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat4 |
| 42 | instantiation | 53, 52 | ⊢  |
| | :  |
| 43 | instantiation | 55, 52, 54 | ⊢  |
| | : , :  |
| 44 | theorem | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.natural_pos_is_pos |
| 45 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat3 |
| 46 | instantiation | 53, 56 | ⊢  |
| | :  |
| 47 | instantiation | 55, 56, 54 | ⊢  |
| | : , :  |
| 48 | theorem | | ⊢  |
| | proveit.logic.equality.sub_right_side_into |
| 49 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.add_2_3 |
| 50 | instantiation | 55, 56, 57 | ⊢  |
| | : , :  |
| 51 | instantiation | 73, 74, 58 | ⊢  |
| | : , : , :  |
| 52 | instantiation | 73, 61, 59 | ⊢  |
| | : , : , :  |
| 53 | theorem | | ⊢  |
| | proveit.numbers.addition.elim_zero_right |
| 54 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.zero_is_complex |
| 55 | theorem | | ⊢  |
| | proveit.numbers.addition.commutation |
| 56 | instantiation | 73, 61, 60 | ⊢  |
| | : , : , :  |
| 57 | instantiation | 73, 61, 62 | ⊢  |
| | : , : , :  |
| 58 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat4 |
| 59 | instantiation | 73, 65, 63 | ⊢  |
| | : , : , :  |
| 60 | instantiation | 73, 65, 64 | ⊢  |
| | : , : , :  |
| 61 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.real_within_complex |
| 62 | instantiation | 73, 65, 66 | ⊢  |
| | : , : , :  |
| 63 | instantiation | 73, 69, 67 | ⊢  |
| | : , : , :  |
| 64 | instantiation | 73, 69, 68 | ⊢  |
| | : , : , :  |
| 65 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.rational_within_real |
| 66 | instantiation | 73, 69, 70 | ⊢  |
| | : , : , :  |
| 67 | instantiation | 73, 74, 71 | ⊢  |
| | : , : , :  |
| 68 | instantiation | 73, 74, 72 | ⊢  |
| | : , : , :  |
| 69 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.int_within_rational |
| 70 | instantiation | 73, 74, 75 | ⊢  |
| | : , : , :  |
| 71 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat1 |
| 72 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat2 |
| 73 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
| 74 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nat_within_int |
| 75 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat3 |
| *equality replacement requirements |