| | step type | requirements | statement |
| 0 | instantiation | 1, 2, 3 | ⊢  |
| | : , : , :  |
| 1 | reference | 8 | ⊢  |
| 2 | instantiation | 8, 4, 5 | ⊢  |
| | : , : , :  |
| 3 | instantiation | 15, 6, 7 | ⊢  |
| | : , : , :  |
| 4 | instantiation | 8, 9, 10 | ⊢  |
| | : , : , :  |
| 5 | instantiation | 15, 11, 12 | ⊢  |
| | : , : , :  |
| 6 | instantiation | 13, 45, 14 | ⊢  |
| | : , : , : , : , : , :  |
| 7 | instantiation | 15, 16, 17 | ⊢  |
| | : , : , :  |
| 8 | theorem | | ⊢  |
| | proveit.logic.equality.sub_left_side_into |
| 9 | instantiation | 18, 45, 73, 21, 19 | ⊢  |
| | : , : , : , : , :  |
| 10 | instantiation | 20, 45, 73, 25, 21, 26 | ⊢  |
| | : , : , : , : , : , : , :  |
| 11 | instantiation | 24, 25, 45, 76, 26, 22 | ⊢  |
| | : , : , : , : , : , : , :  |
| 12 | instantiation | 24, 45, 73, 25, 23, 26 | ⊢  |
| | : , : , : , : , : , : , :  |
| 13 | theorem | | ⊢  |
| | proveit.logic.sets.enumeration.equal_element_equality |
| 14 | assumption | | ⊢  |
| 15 | axiom | | ⊢  |
| | proveit.logic.equality.equals_transitivity |
| 16 | instantiation | 24, 25, 45, 26 | ⊢  |
| | : , : , : , : , : , : , :  |
| 17 | instantiation | 24, 25, 26 | ⊢  |
| | : , : , : , : , : , : , :  |
| 18 | theorem | | ⊢  |
| | proveit.logic.sets.enumeration.proper_subset_of_superset |
| 19 | instantiation | 27, 28, 29 | ⊢  |
| | : , : , :  |
| 20 | theorem | | ⊢  |
| | proveit.logic.sets.enumeration.leftward_permutation |
| 21 | instantiation | 37 | ⊢  |
| | : , :  |
| 22 | instantiation | 38 | ⊢  |
| | : , : , :  |
| 23 | instantiation | 37 | ⊢  |
| | : , :  |
| 24 | theorem | | ⊢  |
| | proveit.logic.sets.enumeration.reduction_right |
| 25 | axiom | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.zero_in_nats |
| 26 | theorem | | ⊢  |
| | proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
| 27 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.refined_nonmembership |
| 28 | instantiation | 30, 45, 73, 31 | ⊢  |
| | : , : , : , :  |
| 29 | instantiation | 32, 76, 33, 34, 35, 36 | ⊢  |
| | : , : , :  |
| 30 | theorem | | ⊢  |
| | proveit.logic.sets.enumeration.subset_eq_of_superset |
| 31 | instantiation | 37 | ⊢  |
| | : , :  |
| 32 | theorem | | ⊢  |
| | proveit.logic.sets.enumeration.nonmembership_fold |
| 33 | instantiation | 38 | ⊢  |
| | : , : , :  |
| 34 | instantiation | 39, 40 | ⊢  |
| | : , :  |
| 35 | instantiation | 44, 73, 76, 41 | ⊢  |
| | : , :  |
| 36 | instantiation | 44, 73, 42, 43 | ⊢  |
| | : , :  |
| 37 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
| 38 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
| 39 | theorem | | ⊢  |
| | proveit.logic.equality.not_equals_symmetry |
| 40 | instantiation | 44, 45, 73, 46 | ⊢  |
| | : , :  |
| 41 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.less_2_3 |
| 42 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat5 |
| 43 | instantiation | 47, 64, 48, 66, 49, 50*, 51* | ⊢  |
| | : , : , :  |
| 44 | theorem | | ⊢  |
| | proveit.numbers.ordering.less_is_not_eq_nat |
| 45 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat1 |
| 46 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.less_1_2 |
| 47 | theorem | | ⊢  |
| | proveit.numbers.addition.strong_bound_via_left_term_bound |
| 48 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.zero_is_real |
| 49 | instantiation | 52, 53 | ⊢  |
| | :  |
| 50 | instantiation | 56, 54, 55 | ⊢  |
| | : , : , :  |
| 51 | instantiation | 56, 57, 58 | ⊢  |
| | : , : , :  |
| 52 | theorem | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.natural_pos_is_pos |
| 53 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat3 |
| 54 | instantiation | 59, 62 | ⊢  |
| | :  |
| 55 | instantiation | 61, 62, 60 | ⊢  |
| | : , :  |
| 56 | theorem | | ⊢  |
| | proveit.logic.equality.sub_right_side_into |
| 57 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.add_2_3 |
| 58 | instantiation | 61, 62, 63 | ⊢  |
| | : , :  |
| 59 | theorem | | ⊢  |
| | proveit.numbers.addition.elim_zero_right |
| 60 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.zero_is_complex |
| 61 | theorem | | ⊢  |
| | proveit.numbers.addition.commutation |
| 62 | instantiation | 74, 65, 64 | ⊢  |
| | : , : , :  |
| 63 | instantiation | 74, 65, 66 | ⊢  |
| | : , : , :  |
| 64 | instantiation | 74, 68, 67 | ⊢  |
| | : , : , :  |
| 65 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.real_within_complex |
| 66 | instantiation | 74, 68, 69 | ⊢  |
| | : , : , :  |
| 67 | instantiation | 74, 71, 70 | ⊢  |
| | : , : , :  |
| 68 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.rational_within_real |
| 69 | instantiation | 74, 71, 72 | ⊢  |
| | : , : , :  |
| 70 | instantiation | 74, 75, 73 | ⊢  |
| | : , : , :  |
| 71 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.int_within_rational |
| 72 | instantiation | 74, 75, 76 | ⊢  |
| | : , : , :  |
| 73 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat2 |
| 74 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
| 75 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nat_within_int |
| 76 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat3 |
| *equality replacement requirements |