| step type | requirements | statement |
0 | instantiation | 1, 2, 3 | ⊢ |
| : , : , : |
1 | reference | 8 | ⊢ |
2 | instantiation | 8, 4, 5 | ⊢ |
| : , : , : |
3 | instantiation | 15, 6, 7 | ⊢ |
| : , : , : |
4 | instantiation | 8, 9, 10 | ⊢ |
| : , : , : |
5 | instantiation | 15, 11, 12 | ⊢ |
| : , : , : |
6 | instantiation | 13, 45, 14 | ⊢ |
| : , : , : , : , : , : |
7 | instantiation | 15, 16, 17 | ⊢ |
| : , : , : |
8 | theorem | | ⊢ |
| proveit.logic.equality.sub_left_side_into |
9 | instantiation | 18, 45, 73, 21, 19 | ⊢ |
| : , : , : , : , : |
10 | instantiation | 20, 45, 73, 25, 21, 26 | ⊢ |
| : , : , : , : , : , : , : |
11 | instantiation | 24, 25, 45, 76, 26, 22 | ⊢ |
| : , : , : , : , : , : , : |
12 | instantiation | 24, 45, 73, 25, 23, 26 | ⊢ |
| : , : , : , : , : , : , : |
13 | theorem | | ⊢ |
| proveit.logic.sets.enumeration.equal_element_equality |
14 | assumption | | ⊢ |
15 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
16 | instantiation | 24, 25, 45, 26 | ⊢ |
| : , : , : , : , : , : , : |
17 | instantiation | 24, 25, 26 | ⊢ |
| : , : , : , : , : , : , : |
18 | theorem | | ⊢ |
| proveit.logic.sets.enumeration.proper_subset_of_superset |
19 | instantiation | 27, 28, 29 | ⊢ |
| : , : , : |
20 | theorem | | ⊢ |
| proveit.logic.sets.enumeration.leftward_permutation |
21 | instantiation | 37 | ⊢ |
| : , : |
22 | instantiation | 38 | ⊢ |
| : , : , : |
23 | instantiation | 37 | ⊢ |
| : , : |
24 | theorem | | ⊢ |
| proveit.logic.sets.enumeration.reduction_right |
25 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
26 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
27 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.refined_nonmembership |
28 | instantiation | 30, 45, 73, 31 | ⊢ |
| : , : , : , : |
29 | instantiation | 32, 76, 33, 34, 35, 36 | ⊢ |
| : , : , : |
30 | theorem | | ⊢ |
| proveit.logic.sets.enumeration.subset_eq_of_superset |
31 | instantiation | 37 | ⊢ |
| : , : |
32 | theorem | | ⊢ |
| proveit.logic.sets.enumeration.nonmembership_fold |
33 | instantiation | 38 | ⊢ |
| : , : , : |
34 | instantiation | 39, 40 | ⊢ |
| : , : |
35 | instantiation | 44, 73, 76, 41 | ⊢ |
| : , : |
36 | instantiation | 44, 73, 42, 43 | ⊢ |
| : , : |
37 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
38 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
39 | theorem | | ⊢ |
| proveit.logic.equality.not_equals_symmetry |
40 | instantiation | 44, 45, 73, 46 | ⊢ |
| : , : |
41 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.less_2_3 |
42 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat5 |
43 | instantiation | 47, 64, 48, 66, 49, 50*, 51* | ⊢ |
| : , : , : |
44 | theorem | | ⊢ |
| proveit.numbers.ordering.less_is_not_eq_nat |
45 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
46 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.less_1_2 |
47 | theorem | | ⊢ |
| proveit.numbers.addition.strong_bound_via_left_term_bound |
48 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.zero_is_real |
49 | instantiation | 52, 53 | ⊢ |
| : |
50 | instantiation | 56, 54, 55 | ⊢ |
| : , : , : |
51 | instantiation | 56, 57, 58 | ⊢ |
| : , : , : |
52 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.natural_pos_is_pos |
53 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat3 |
54 | instantiation | 59, 62 | ⊢ |
| : |
55 | instantiation | 61, 62, 60 | ⊢ |
| : , : |
56 | theorem | | ⊢ |
| proveit.logic.equality.sub_right_side_into |
57 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_2_3 |
58 | instantiation | 61, 62, 63 | ⊢ |
| : , : |
59 | theorem | | ⊢ |
| proveit.numbers.addition.elim_zero_right |
60 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.zero_is_complex |
61 | theorem | | ⊢ |
| proveit.numbers.addition.commutation |
62 | instantiation | 74, 65, 64 | ⊢ |
| : , : , : |
63 | instantiation | 74, 65, 66 | ⊢ |
| : , : , : |
64 | instantiation | 74, 68, 67 | ⊢ |
| : , : , : |
65 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
66 | instantiation | 74, 68, 69 | ⊢ |
| : , : , : |
67 | instantiation | 74, 71, 70 | ⊢ |
| : , : , : |
68 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
69 | instantiation | 74, 71, 72 | ⊢ |
| : , : , : |
70 | instantiation | 74, 75, 73 | ⊢ |
| : , : , : |
71 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
72 | instantiation | 74, 75, 76 | ⊢ |
| : , : , : |
73 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
74 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
75 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
76 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat3 |
*equality replacement requirements |