| | step type | requirements | statement |
| 0 | instantiation | 1, 2, 3 | ⊢  |
| | : , : , :  |
| 1 | theorem | | ⊢  |
| | proveit.logic.equality.sub_left_side_into |
| 2 | instantiation | 4, 69, 66, 14, 35, 5 | ⊢  |
| | : , : , : , : , :  |
| 3 | instantiation | 20, 6, 7 | ⊢  |
| | : , : , :  |
| 4 | theorem | | ⊢  |
| | proveit.logic.sets.enumeration.proper_subset_of_superset |
| 5 | instantiation | 8, 69, 14, 9, 10, 11 | ⊢  |
| | : , : , :  |
| 6 | instantiation | 20, 12, 13 | ⊢  |
| | : , : , :  |
| 7 | instantiation | 33, 69, 66, 29, 14, 35, 31 | ⊢  |
| | : , : , : , : , : , : , :  |
| 8 | theorem | | ⊢  |
| | proveit.logic.sets.enumeration.nonmembership_fold |
| 9 | instantiation | 16, 15 | ⊢  |
| | : , :  |
| 10 | instantiation | 16, 17 | ⊢  |
| | : , :  |
| 11 | instantiation | 26, 27, 18, 19 | ⊢  |
| | : , :  |
| 12 | instantiation | 20, 21, 22 | ⊢  |
| | : , : , :  |
| 13 | instantiation | 33, 66, 69, 29, 23, 24, 31 | ⊢  |
| | : , : , : , : , : , : , :  |
| 14 | instantiation | 37 | ⊢  |
| | : , : , :  |
| 15 | instantiation | 26, 66, 27, 25 | ⊢  |
| | : , :  |
| 16 | theorem | | ⊢  |
| | proveit.logic.equality.not_equals_symmetry |
| 17 | instantiation | 26, 30, 27, 28 | ⊢  |
| | : , :  |
| 18 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat6 |
| 19 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.less_5_6 |
| 20 | axiom | | ⊢  |
| | proveit.logic.equality.equals_transitivity |
| 21 | instantiation | 33, 29, 34, 30, 31, 32 | ⊢  |
| | : , : , : , : , : , : , :  |
| 22 | instantiation | 33, 34, 66, 35, 36 | ⊢  |
| | : , : , : , : , : , : , :  |
| 23 | instantiation | 44 | ⊢  |
| | : , :  |
| 24 | instantiation | 37 | ⊢  |
| | : , : , :  |
| 25 | instantiation | 38, 57, 39, 59, 40, 41*, 42* | ⊢  |
| | : , : , :  |
| 26 | theorem | | ⊢  |
| | proveit.numbers.ordering.less_is_not_eq_nat |
| 27 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat5 |
| 28 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.less_4_5 |
| 29 | axiom | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.zero_in_nats |
| 30 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat4 |
| 31 | theorem | | ⊢  |
| | proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
| 32 | instantiation | 43 | ⊢  |
| | : , : , : , :  |
| 33 | theorem | | ⊢  |
| | proveit.logic.sets.enumeration.leftward_permutation |
| 34 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat1 |
| 35 | instantiation | 44 | ⊢  |
| | : , :  |
| 36 | instantiation | 44 | ⊢  |
| | : , :  |
| 37 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
| 38 | theorem | | ⊢  |
| | proveit.numbers.addition.strong_bound_via_left_term_bound |
| 39 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.zero_is_real |
| 40 | instantiation | 45, 46 | ⊢  |
| | :  |
| 41 | instantiation | 49, 47, 48 | ⊢  |
| | : , : , :  |
| 42 | instantiation | 49, 50, 51 | ⊢  |
| | : , : , :  |
| 43 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_4_typical_eq |
| 44 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
| 45 | theorem | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.natural_pos_is_pos |
| 46 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat3 |
| 47 | instantiation | 52, 55 | ⊢  |
| | :  |
| 48 | instantiation | 54, 55, 53 | ⊢  |
| | : , :  |
| 49 | theorem | | ⊢  |
| | proveit.logic.equality.sub_right_side_into |
| 50 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.add_2_3 |
| 51 | instantiation | 54, 55, 56 | ⊢  |
| | : , :  |
| 52 | theorem | | ⊢  |
| | proveit.numbers.addition.elim_zero_right |
| 53 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.zero_is_complex |
| 54 | theorem | | ⊢  |
| | proveit.numbers.addition.commutation |
| 55 | instantiation | 67, 58, 57 | ⊢  |
| | : , : , :  |
| 56 | instantiation | 67, 58, 59 | ⊢  |
| | : , : , :  |
| 57 | instantiation | 67, 61, 60 | ⊢  |
| | : , : , :  |
| 58 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.real_within_complex |
| 59 | instantiation | 67, 61, 62 | ⊢  |
| | : , : , :  |
| 60 | instantiation | 67, 64, 63 | ⊢  |
| | : , : , :  |
| 61 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.rational_within_real |
| 62 | instantiation | 67, 64, 65 | ⊢  |
| | : , : , :  |
| 63 | instantiation | 67, 68, 66 | ⊢  |
| | : , : , :  |
| 64 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.int_within_rational |
| 65 | instantiation | 67, 68, 69 | ⊢  |
| | : , : , :  |
| 66 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat2 |
| 67 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
| 68 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nat_within_int |
| 69 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat3 |
| *equality replacement requirements |