logo

Show the Proof

In [1]:
import proveit
# Automation is not needed when only showing a stored proof:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%show_proof
Out[1]:
 step typerequirementsstatement
0instantiation1, 2  ⊢  
  :
1axiom  ⊢  
 proveit.logic.booleans.negation.negation_elim
2instantiation3, 4  ⊢  
  : , :
3theorem  ⊢  
 proveit.logic.equality.unfold_not_equals
4instantiation5, 6  ⊢  
  : , :
5theorem  ⊢  
 proveit.logic.equality.not_equals_symmetry
6instantiation7, 32, 8, 9  ⊢  
  : , :
7theorem  ⊢  
 proveit.numbers.ordering.less_is_not_eq_nat
8theorem  ⊢  
 proveit.numbers.numerals.decimals.nat4
9instantiation10, 25, 11, 12, 13*, 14*  ⊢  
  : , : , :
10theorem  ⊢  
 proveit.numbers.addition.strong_bound_via_left_term_bound
11theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.zero_is_real
12instantiation15, 16  ⊢  
  :
13instantiation17, 18, 19  ⊢  
  : , : , :
14theorem  ⊢  
 proveit.numbers.numerals.decimals.add_2_2
15theorem  ⊢  
 proveit.numbers.number_sets.natural_numbers.natural_pos_is_pos
16theorem  ⊢  
 proveit.numbers.numerals.decimals.posnat2
17theorem  ⊢  
 proveit.logic.equality.sub_right_side_into
18instantiation20, 22  ⊢  
  :
19instantiation21, 22, 23  ⊢  
  : , :
20theorem  ⊢  
 proveit.numbers.addition.elim_zero_right
21theorem  ⊢  
 proveit.numbers.addition.commutation
22instantiation30, 24, 25  ⊢  
  : , : , :
23theorem  ⊢  
 proveit.numbers.number_sets.complex_numbers.zero_is_complex
24theorem  ⊢  
 proveit.numbers.number_sets.complex_numbers.real_within_complex
25instantiation30, 26, 27  ⊢  
  : , : , :
26theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.rational_within_real
27instantiation30, 28, 29  ⊢  
  : , : , :
28theorem  ⊢  
 proveit.numbers.number_sets.rational_numbers.int_within_rational
29instantiation30, 31, 32  ⊢  
  : , : , :
30theorem  ⊢  
 proveit.logic.sets.inclusion.superset_membership_from_proper_subset
31theorem  ⊢  
 proveit.numbers.number_sets.integers.nat_within_int
32theorem  ⊢  
 proveit.numbers.numerals.decimals.nat2
*equality replacement requirements