| step type | requirements | statement |
0 | instantiation | 1, 2, 3 | ⊢ |
| : , : , : |
1 | theorem | | ⊢ |
| proveit.logic.equality.sub_left_side_into |
2 | instantiation | 4, 62, 25, 17, 5 | ⊢ |
| : , : , : , : , : |
3 | instantiation | 6, 7, 8 | ⊢ |
| : , : , : |
4 | theorem | | ⊢ |
| proveit.logic.sets.enumeration.proper_subset_of_superset |
5 | instantiation | 9, 62, 17, 10, 11, 12 | ⊢ |
| : , : , : |
6 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
7 | instantiation | 13, 14, 15, 16 | ⊢ |
| : , : , : , : |
8 | instantiation | 27, 62, 25, 28, 17, 31 | ⊢ |
| : , : , : , : , : , : , : |
9 | theorem | | ⊢ |
| proveit.logic.sets.enumeration.nonmembership_fold |
10 | instantiation | 18, 19 | ⊢ |
| : , : |
11 | instantiation | 32, 62, 20, 21 | ⊢ |
| : , : |
12 | instantiation | 32, 62, 22, 23 | ⊢ |
| : , : |
13 | theorem | | ⊢ |
| proveit.logic.equality.four_chain_transitivity |
14 | instantiation | 27, 28, 25, 62, 31, 24 | ⊢ |
| : , : , : , : , : , : , : |
15 | instantiation | 27, 25, 62, 28, 26, 31 | ⊢ |
| : , : , : , : , : , : , : |
16 | instantiation | 27, 53, 28, 29, 30, 31 | ⊢ |
| : , : , : , : , : , : , : |
17 | instantiation | 40 | ⊢ |
| : , : , : |
18 | theorem | | ⊢ |
| proveit.logic.equality.not_equals_symmetry |
19 | instantiation | 32, 53, 62, 33 | ⊢ |
| : , : |
20 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat5 |
21 | instantiation | 34, 55, 35, 36, 37, 38*, 39* | ⊢ |
| : , : , : |
22 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat4 |
23 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.less_3_4 |
24 | instantiation | 40 | ⊢ |
| : , : , : |
25 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
26 | instantiation | 40 | ⊢ |
| : , : , : |
27 | theorem | | ⊢ |
| proveit.logic.sets.enumeration.leftward_permutation |
28 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
29 | instantiation | 41 | ⊢ |
| : , : |
30 | instantiation | 41 | ⊢ |
| : , : |
31 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
32 | theorem | | ⊢ |
| proveit.numbers.ordering.less_is_not_eq_nat |
33 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.less_2_3 |
34 | theorem | | ⊢ |
| proveit.numbers.addition.strong_bound_via_left_term_bound |
35 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.zero_is_real |
36 | instantiation | 60, 56, 42 | ⊢ |
| : , : , : |
37 | instantiation | 43, 44 | ⊢ |
| : |
38 | instantiation | 45, 46, 47 | ⊢ |
| : , : , : |
39 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_2_3 |
40 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
41 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
42 | instantiation | 60, 58, 48 | ⊢ |
| : , : , : |
43 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.natural_pos_is_pos |
44 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat2 |
45 | theorem | | ⊢ |
| proveit.logic.equality.sub_right_side_into |
46 | instantiation | 49, 51 | ⊢ |
| : |
47 | instantiation | 50, 51, 52 | ⊢ |
| : , : |
48 | instantiation | 60, 61, 53 | ⊢ |
| : , : , : |
49 | theorem | | ⊢ |
| proveit.numbers.addition.elim_zero_right |
50 | theorem | | ⊢ |
| proveit.numbers.addition.commutation |
51 | instantiation | 60, 54, 55 | ⊢ |
| : , : , : |
52 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.zero_is_complex |
53 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
54 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
55 | instantiation | 60, 56, 57 | ⊢ |
| : , : , : |
56 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
57 | instantiation | 60, 58, 59 | ⊢ |
| : , : , : |
58 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
59 | instantiation | 60, 61, 62 | ⊢ |
| : , : , : |
60 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
61 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
62 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat3 |
*equality replacement requirements |