| step type | requirements | statement |
0 | instantiation | 1, 2, 3 | ⊢  |
| : , : , :  |
1 | theorem | | ⊢  |
| proveit.logic.equality.sub_left_side_into |
2 | instantiation | 4, 62, 25, 17, 5 | ⊢  |
| : , : , : , : , :  |
3 | instantiation | 6, 7, 8 | ⊢  |
| : , : , :  |
4 | theorem | | ⊢  |
| proveit.logic.sets.enumeration.proper_subset_of_superset |
5 | instantiation | 9, 62, 17, 10, 11, 12 | ⊢  |
| : , : , :  |
6 | axiom | | ⊢  |
| proveit.logic.equality.equals_transitivity |
7 | instantiation | 13, 14, 15, 16 | ⊢  |
| : , : , : , :  |
8 | instantiation | 27, 62, 25, 28, 17, 31 | ⊢  |
| : , : , : , : , : , : , :  |
9 | theorem | | ⊢  |
| proveit.logic.sets.enumeration.nonmembership_fold |
10 | instantiation | 18, 19 | ⊢  |
| : , :  |
11 | instantiation | 32, 62, 20, 21 | ⊢  |
| : , :  |
12 | instantiation | 32, 62, 22, 23 | ⊢  |
| : , :  |
13 | theorem | | ⊢  |
| proveit.logic.equality.four_chain_transitivity |
14 | instantiation | 27, 28, 25, 62, 31, 24 | ⊢  |
| : , : , : , : , : , : , :  |
15 | instantiation | 27, 25, 62, 28, 26, 31 | ⊢  |
| : , : , : , : , : , : , :  |
16 | instantiation | 27, 53, 28, 29, 30, 31 | ⊢  |
| : , : , : , : , : , : , :  |
17 | instantiation | 40 | ⊢  |
| : , : , :  |
18 | theorem | | ⊢  |
| proveit.logic.equality.not_equals_symmetry |
19 | instantiation | 32, 53, 62, 33 | ⊢  |
| : , :  |
20 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat5 |
21 | instantiation | 34, 55, 35, 36, 37, 38*, 39* | ⊢  |
| : , : , :  |
22 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat4 |
23 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.less_3_4 |
24 | instantiation | 40 | ⊢  |
| : , : , :  |
25 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat1 |
26 | instantiation | 40 | ⊢  |
| : , : , :  |
27 | theorem | | ⊢  |
| proveit.logic.sets.enumeration.leftward_permutation |
28 | axiom | | ⊢  |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
29 | instantiation | 41 | ⊢  |
| : , :  |
30 | instantiation | 41 | ⊢  |
| : , :  |
31 | theorem | | ⊢  |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
32 | theorem | | ⊢  |
| proveit.numbers.ordering.less_is_not_eq_nat |
33 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.less_2_3 |
34 | theorem | | ⊢  |
| proveit.numbers.addition.strong_bound_via_left_term_bound |
35 | theorem | | ⊢  |
| proveit.numbers.number_sets.real_numbers.zero_is_real |
36 | instantiation | 60, 56, 42 | ⊢  |
| : , : , :  |
37 | instantiation | 43, 44 | ⊢  |
| :  |
38 | instantiation | 45, 46, 47 | ⊢  |
| : , : , :  |
39 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.add_2_3 |
40 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
41 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
42 | instantiation | 60, 58, 48 | ⊢  |
| : , : , :  |
43 | theorem | | ⊢  |
| proveit.numbers.number_sets.natural_numbers.natural_pos_is_pos |
44 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.posnat2 |
45 | theorem | | ⊢  |
| proveit.logic.equality.sub_right_side_into |
46 | instantiation | 49, 51 | ⊢  |
| :  |
47 | instantiation | 50, 51, 52 | ⊢  |
| : , :  |
48 | instantiation | 60, 61, 53 | ⊢  |
| : , : , :  |
49 | theorem | | ⊢  |
| proveit.numbers.addition.elim_zero_right |
50 | theorem | | ⊢  |
| proveit.numbers.addition.commutation |
51 | instantiation | 60, 54, 55 | ⊢  |
| : , : , :  |
52 | theorem | | ⊢  |
| proveit.numbers.number_sets.complex_numbers.zero_is_complex |
53 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat2 |
54 | theorem | | ⊢  |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
55 | instantiation | 60, 56, 57 | ⊢  |
| : , : , :  |
56 | theorem | | ⊢  |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
57 | instantiation | 60, 58, 59 | ⊢  |
| : , : , :  |
58 | theorem | | ⊢  |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
59 | instantiation | 60, 61, 62 | ⊢  |
| : , : , :  |
60 | theorem | | ⊢  |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
61 | theorem | | ⊢  |
| proveit.numbers.number_sets.integers.nat_within_int |
62 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat3 |
*equality replacement requirements |