logo

Expression of type Lambda

from the theory of proveit.logic.equality

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import Lambda, a, c, f, fa, fx, x
from proveit.logic import Equals, Implies
In [2]:
# build up the expression from sub-expressions
expr = Lambda([f, x, a, c], Implies(Equals(x, a), Implies(Equals(fa, c), Equals(fx, c))))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(f, x, a, c\right) \mapsto \left(\left(x = a\right) \Rightarrow \left(\left(f\left(a\right) = c\right) \Rightarrow \left(f\left(x\right) = c\right)\right)\right)
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Lambdaparameters: 1
body: 2
1ExprTuple18, 21, 20, 16
2Operationoperator: 7
operands: 3
3ExprTuple4, 5
4Operationoperator: 12
operands: 6
5Operationoperator: 7
operands: 8
6ExprTuple21, 20
7Literal
8ExprTuple9, 10
9Operationoperator: 12
operands: 11
10Operationoperator: 12
operands: 13
11ExprTuple14, 16
12Literal
13ExprTuple15, 16
14Operationoperator: 18
operand: 20
15Operationoperator: 18
operand: 21
16Variable
17ExprTuple20
18Variable
19ExprTuple21
20Variable
21Variable