logo

Expression of type ExprTuple

from the theory of proveit.logic.equality

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprTuple
from proveit.core_expr_types import x_1_to_n, y_1_to_n
In [2]:
# build up the expression from sub-expressions
expr = ExprTuple([x_1_to_n], [y_1_to_n])
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(\left(x_{1}, x_{2}, \ldots, x_{n}\right), \left(y_{1}, y_{2}, \ldots, y_{n}\right)\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
wrap_positionsposition(s) at which wrapping is to occur; 'n' is after the nth comma.()()('with_wrapping_at',)
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'leftleft('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1, 2
1ExprTuple3
2ExprTuple4
3ExprRangelambda_map: 5
start_index: 7
end_index: 8
4ExprRangelambda_map: 6
start_index: 7
end_index: 8
5Lambdaparameter: 14
body: 9
6Lambdaparameter: 14
body: 10
7Literal
8Variable
9IndexedVarvariable: 11
index: 14
10IndexedVarvariable: 12
index: 14
11Variable
12Variable
13ExprTuple14
14Variable