logo

Expression of type Lambda

from the theory of proveit.logic.equality

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import Conditional, Lambda, P, Q
from proveit.logic import And, Equals
In [2]:
# build up the expression from sub-expressions
expr = Lambda([P, Q], Conditional(P, And(Q, Equals(P, Q))))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(P, Q\right) \mapsto \left\{P \textrm{ if } Q ,  P = Q\right..
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Lambdaparameters: 7
body: 1
1Conditionalvalue: 8
condition: 2
2Operationoperator: 3
operands: 4
3Literal
4ExprTuple9, 5
5Operationoperator: 6
operands: 7
6Literal
7ExprTuple8, 9
8Variable
9Variable