logo

Expression of type ExprTuple

from the theory of proveit.logic.equality

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprTuple
from proveit.core_expr_types import P__x_1_to_n, x_eq_y__1_to_n
In [2]:
# build up the expression from sub-expressions
expr = ExprTuple(P__x_1_to_n, x_eq_y__1_to_n)
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(P\left(x_{1}, x_{2}, \ldots, x_{n}\right),\left(x_{1} = y_{1}\right), \left(x_{2} = y_{2}\right), \ldots, \left(x_{n} = y_{n}\right)\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
wrap_positionsposition(s) at which wrapping is to occur; 'n' is after the nth comma.()()('with_wrapping_at',)
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'leftleft('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1, 2
1Operationoperator: 3
operands: 4
2ExprRangelambda_map: 5
start_index: 9
end_index: 10
3Variable
4ExprTuple6
5Lambdaparameter: 18
body: 7
6ExprRangelambda_map: 8
start_index: 9
end_index: 10
7Operationoperator: 11
operands: 12
8Lambdaparameter: 18
body: 13
9Literal
10Variable
11Literal
12ExprTuple13, 14
13IndexedVarvariable: 15
index: 18
14IndexedVarvariable: 16
index: 18
15Variable
16Variable
17ExprTuple18
18Variable