logo

Expression of type Equals

from the theory of proveit.logic.equality

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import Function, a, alpha, b, beta, f, g, h, n, theta
from proveit.logic import Equals, Exists
from proveit.numbers import Natural
In [2]:
# build up the expression from sub-expressions
sub_expr1 = [n]
expr = Equals(Function(f, [Function(g, [a, b]), Exists(instance_param_or_params = sub_expr1, instance_expr = Function(h, sub_expr1), domain = Natural)]), Function(f, [Function(g, [alpha, beta]), Exists(instance_param_or_params = sub_expr1, instance_expr = Function(theta, sub_expr1), domain = Natural)])).with_wrapping_at(2)
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\begin{array}{c} \begin{array}{l} f\left(g\left(a, b\right), \exists_{n \in \mathbb{N}}~h\left(n\right)\right) =  \\ f\left(g\left(\alpha, \beta\right), \exists_{n \in \mathbb{N}}~\theta\left(n\right)\right) \end{array} \end{array}
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
wrap_positionsposition(s) at which wrapping is to occur; '2 n - 1' is after the nth operand, '2 n' is after the nth operation.()(2)('with_wrapping_at', 'with_wrap_before_operator', 'with_wrap_after_operator', 'without_wrapping', 'wrap_positions')
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'centercenter('with_justification',)
directionDirection of the relation (normal or reversed)normalnormal('with_direction_reversed', 'is_reversed')
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 1
operands: 2
1Literal
2ExprTuple3, 4
3Operationoperator: 6
operands: 5
4Operationoperator: 6
operands: 7
5ExprTuple8, 9
6Variable
7ExprTuple10, 11
8Operationoperator: 14
operands: 12
9Operationoperator: 16
operand: 20
10Operationoperator: 14
operands: 15
11Operationoperator: 16
operand: 23
12ExprTuple18, 19
13ExprTuple20
14Variable
15ExprTuple21, 22
16Literal
17ExprTuple23
18Variable
19Variable
20Lambdaparameter: 34
body: 24
21Variable
22Variable
23Lambdaparameter: 34
body: 25
24Conditionalvalue: 26
condition: 28
25Conditionalvalue: 27
condition: 28
26Operationoperator: 29
operand: 34
27Operationoperator: 30
operand: 34
28Operationoperator: 32
operands: 33
29Variable
30Variable
31ExprTuple34
32Literal
33ExprTuple34, 35
34Variable
35Literal