logo

Expression of type Lambda

from the theory of proveit.logic.equality

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import Lambda, Variable, a, b, c
from proveit.logic import Equals
from proveit.numbers import Add, Exp, frac
In [2]:
# build up the expression from sub-expressions
sub_expr1 = Variable("_a", latex_format = r"{_{-}a}")
expr = Lambda(sub_expr1, Equals(a, Add(b, frac(c, sub_expr1), Exp(c, sub_expr1))))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
{_{-}a} \mapsto \left(a = \left(b + \frac{c}{{_{-}a}} + c^{{_{-}a}}\right)\right)
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Lambdaparameter: 16
body: 2
1ExprTuple16
2Operationoperator: 3
operands: 4
3Literal
4ExprTuple5, 6
5Variable
6Operationoperator: 7
operands: 8
7Literal
8ExprTuple9, 10, 11
9Variable
10Operationoperator: 12
operands: 14
11Operationoperator: 13
operands: 14
12Literal
13Literal
14ExprTuple15, 16
15Variable
16Variable