logo

Expression of type NamedExprs

from the theory of proveit.logic.equality

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import Lambda, NamedExprs, Variable, a, b, c, d
from proveit.logic import Equals
from proveit.numbers import Add, Exp, frac
In [2]:
# build up the expression from sub-expressions
sub_expr1 = Variable("_a", latex_format = r"{_{-}a}")
expr = NamedExprs(("lambda", Lambda(sub_expr1, Equals(a, Add(b, frac(c, sub_expr1), Exp(c, d))))), ("${_{-}a}$", d))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left\{ \begin{array}{l}
{\rm lambda}: \left[{_{-}a} \mapsto \left(a = \left(b + \frac{c}{{_{-}a}} + c^{d}\right)\right)\right]\\
{_{-}a}: d\\
\end{array} \right\}

In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0NamedExprslambda: 1
${_{-}a}$: 19
1Lambdaparameter: 17
body: 3
2ExprTuple17
3Operationoperator: 4
operands: 5
4Literal
5ExprTuple6, 7
6Variable
7Operationoperator: 8
operands: 9
8Literal
9ExprTuple10, 11, 12
10Variable
11Operationoperator: 13
operands: 14
12Operationoperator: 15
operands: 16
13Literal
14ExprTuple18, 17
15Literal
16ExprTuple18, 19
17Variable
18Variable
19Variable