logo

Expression of type Lambda

from the theory of proveit.logic.equality

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import Conditional, Lambda, f, fx, fy, x, y
from proveit.logic import Equals
In [2]:
# build up the expression from sub-expressions
expr = Lambda([f, x, y], Conditional(Equals(fx, fy), Equals(x, y)))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(f, x, y\right) \mapsto \left\{f\left(x\right) = f\left(y\right) \textrm{ if } x = y\right..
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Lambdaparameters: 1
body: 2
1ExprTuple11, 13, 14
2Conditionalvalue: 3
condition: 4
3Operationoperator: 6
operands: 5
4Operationoperator: 6
operands: 7
5ExprTuple8, 9
6Literal
7ExprTuple13, 14
8Operationoperator: 11
operand: 13
9Operationoperator: 11
operand: 14
10ExprTuple13
11Variable
12ExprTuple14
13Variable
14Variable