logo

Expression of type Lambda

from the theory of proveit.logic.booleans.quantification.universality

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import Lambda, P, Q
from proveit.logic import Boolean, InSet
from proveit.logic.booleans.quantification import general_forall_Px_if_Qx
In [2]:
# build up the expression from sub-expressions
expr = Lambda([P, Q], InSet(general_forall_Px_if_Qx, Boolean))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(P, Q\right) \mapsto \left(\left[\forall_{x_{1}, x_{2}, \ldots, x_{n}~|~Q\left(x_{1}, x_{2}, \ldots, x_{n}\right)}~P\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right] \in \mathbb{B}\right)
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Lambdaparameters: 1
body: 2
1ExprTuple13, 14
2Operationoperator: 3
operands: 4
3Literal
4ExprTuple5, 6
5Operationoperator: 7
operand: 9
6Literal
7Literal
8ExprTuple9
9Lambdaparameters: 15
body: 10
10Conditionalvalue: 11
condition: 12
11Operationoperator: 13
operands: 15
12Operationoperator: 14
operands: 15
13Variable
14Variable
15ExprTuple16
16ExprRangelambda_map: 17
start_index: 18
end_index: 19
17Lambdaparameter: 23
body: 20
18Literal
19Variable
20IndexedVarvariable: 21
index: 23
21Variable
22ExprTuple23
23Variable