logo

Expression of type ExprTuple

from the theory of proveit.logic.booleans.quantification.existence

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprTuple
from proveit.core_expr_types import P__y_1_to_n, Q__y_1_to_n
In [2]:
# build up the expression from sub-expressions
expr = ExprTuple(P__y_1_to_n, Q__y_1_to_n)
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(P\left(y_{1}, y_{2}, \ldots, y_{n}\right), Q\left(y_{1}, y_{2}, \ldots, y_{n}\right)\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
wrap_positionsposition(s) at which wrapping is to occur; 'n' is after the nth comma.()()('with_wrapping_at',)
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'leftleft('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1, 2
1Operationoperator: 3
operands: 5
2Operationoperator: 4
operands: 5
3Variable
4Variable
5ExprTuple6
6ExprRangelambda_map: 7
start_index: 8
end_index: 9
7Lambdaparameter: 13
body: 10
8Literal
9Variable
10IndexedVarvariable: 11
index: 13
11Variable
12ExprTuple13
13Variable