logo

Expression of type ExprTuple

from the theory of proveit.logic.booleans.quantification

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import Conditional, ExprTuple, Lambda
from proveit.core_expr_types import P__x_1_to_m_y_1_to_n, R__x_1_to_m_y_1_to_n, y_1_to_n
In [2]:
# build up the expression from sub-expressions
expr = ExprTuple(Lambda([y_1_to_n], Conditional(P__x_1_to_m_y_1_to_n, R__x_1_to_m_y_1_to_n)))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(\left(y_{1}, y_{2}, \ldots, y_{n}\right) \mapsto \left\{P\left(x_{1}, x_{2}, \ldots, x_{m},y_{1}, y_{2}, \ldots, y_{n}\right) \textrm{ if } R\left(x_{1}, x_{2}, \ldots, x_{m},y_{1}, y_{2}, \ldots, y_{n}\right)\right..\right)
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1
1Lambdaparameters: 2
body: 3
2ExprTuple10
3Conditionalvalue: 4
condition: 5
4Operationoperator: 6
operands: 8
5Operationoperator: 7
operands: 8
6Variable
7Variable
8ExprTuple9, 10
9ExprRangelambda_map: 11
start_index: 14
end_index: 12
10ExprRangelambda_map: 13
start_index: 14
end_index: 15
11Lambdaparameter: 21
body: 16
12Variable
13Lambdaparameter: 21
body: 17
14Literal
15Variable
16IndexedVarvariable: 18
index: 21
17IndexedVarvariable: 19
index: 21
18Variable
19Variable
20ExprTuple21
21Variable