logo

Expression of type Lambda

from the theory of proveit.logic.booleans.quantification

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import Conditional, Lambda
from proveit.core_expr_types import P__y_1_to_n, Q__y_1_to_n, y_1_to_n
from proveit.logic import Not
In [2]:
# build up the expression from sub-expressions
expr = Lambda([y_1_to_n], Conditional(Not(P__y_1_to_n), Q__y_1_to_n))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(y_{1}, y_{2}, \ldots, y_{n}\right) \mapsto \left\{\lnot P\left(y_{1}, y_{2}, \ldots, y_{n}\right) \textrm{ if } Q\left(y_{1}, y_{2}, \ldots, y_{n}\right)\right..
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Lambdaparameters: 9
body: 1
1Conditionalvalue: 2
condition: 3
2Operationoperator: 4
operand: 7
3Operationoperator: 6
operands: 9
4Literal
5ExprTuple7
6Variable
7Operationoperator: 8
operands: 9
8Variable
9ExprTuple10
10ExprRangelambda_map: 11
start_index: 12
end_index: 13
11Lambdaparameter: 17
body: 14
12Literal
13Variable
14IndexedVarvariable: 15
index: 17
15Variable
16ExprTuple17
17Variable